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[1] The recently developed expected moments algorithm (EMA) [Cohn et al., 1997]
does as well as maximum likelihood estimations at estimating log-Pearson type 3 (LP3)
flood quantiles using systematic and historical flood information. Needed extensions
include use of a regional skewness estimator and its precision to be consistent with
Bulletin 17B. Another issue addressed by Bulletin 17B is the treatment of low outliers.
A Monte Carlo study compares the performance of Bulletin 17B using the entire sample
with and without regional skew with estimators that use regional skew and censor low
outliers, including an extended EMA estimator, the conditional probability adjustment
(CPA) from Bulletin 17B, and an estimator that uses probability plot regression (PPR) to
compute substitute values for low outliers. Estimators that neglect regional skew
information do much worse than estimators that use an informative regional skewness
estimator. For LP3 data the low outlier rejection procedure generally results in no loss of
overall accuracy, and the differences between the MSEs of the estimators that used an
informative regional skew are generally modest in the skewness range of real interest.
Samples contaminated to model actual flood data demonstrate that estimators which give
special treatment to low outliers significantly outperform estimators that make no such

adjustment.
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1. Introduction

[2] Uniform flood-frequency techniques recommended
for use by Federal agencies are presented in Bulletin 17B
[Interagency Committee on Water Data (IACWD), 1982].
The fields of hydrology and flood frequency analysis have
substantially evolved since Bulletin 17 was first published
in 1976 and last updated in 1982, but new techniques have
yet to become part of standard practice. This study attempts
to quantify the value of regional skew information and the
impacts of adjustments for low outliers in the flood-
frequency techniques employed by U.S. federal agencies.

[3] The original Bulletin 17 [Water Resources Council,
1976] included an algorithm for weighting the station skew
and a regional skew. Introduction of such a weighting
scheme was a new idea; Bulletin 15 had employed the
station skew when estimating an LP3 distribution. However,
Bulletin 17 lacked a theoretical justification for the proposed
weights. Tasker [1978] suggested that the minimum vari-
ance skew estimator would be obtained by weighting station
and regional skews by the inverse of their variances;
Bulletin 17B recommends an inverse MSE weighting
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scheme to reflect estimator bias. This paper illustrates the
value of the mean-square error (MSE)-skew weighting
scheme as a function of the precision of the regional
estimate and the sample size.

[4] Bulletin 17B (hereinafter referred to as B17) defines
outliers as “data points which depart significantly from the
trend of the remaining data.” B17 uses a log-transformation
of the data; therefore, “one or more unusual low-flow
values can distort the entire fitted frequency distribution”
[Stedinger et al., 1993, p. 18.45]. If low outliers are
identified and removed from the sample, B17 recommends
the use of a conditional probability adjustment (CPA) to
compute a frequency curve with the retained values.

[5] Methods developed to use historical data and cen-
sored samples can be extended for the treatment of low
outliers. The expected moments algorithm (EMA) was
originally developed by Cohn et al. [1997] for the incorpo-
ration of historical information in flood frequency analyses.
This paper extends EMA to make use of a regional
skewness estimator and considers use of EMA when low
outliers are censored. Another alternative is probability plot
regression (PPR), employed by Gilliom and Helsel [1986]
and Helsel and Cohn [1988] as an estimation technique for
distribution parameters of censored water-quality data sets.
Kroll and Stedinger [1996] consider its use for water quality
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and low-flow frequency analyses. The research described
here explores use of EMA and PPR as alternatives to the
CPA estimator in Bulletin 17B for flood frequency analysis
following the identification of low outliers.

2. Bulletin 17B Procedures

[6] B17 recommends fitting a log-Pearson type 3 (LP3)
distribution to annual flood series. For a systematic record
of length N years, the recommended technique is to use the
method of moments to fit a Pearson type 3 (P3) distribution
to the base 10 logarithms of the flood peaks, denoted {X;,
..., Xn}. Estimates of the mean, standard deviation, and
skew coefficient of the logarithms of the sample data are
computed using traditional moment estimators.

2.1. Weighted Skew Estimation

[7] The data available at a given site are generally limited
to less than 100 years and are often less than 30 years in
length. The accuracy of the station skewness estimator
should be improved by combining it with a regional skew
estimator obtained by pooling data from nearby sites. B17
recommends combining the sample skew y and the regional
skew G to obtain a weighted skew:

MSE;G + MSEgy

G =
MSE; + MSEg

(1)
where MSEj is the mean-square error (equal to the variance
plus bias, squared) of the station skew, and MSE is the
estimation error of the regional skew. This weighting
scheme was adopted from Tasker [1978] but was extended
by the B17 work group to address the bias in the sample
skew estimate; this equation minimizes the MSE of the
skew estimator provided that G is unbiased and independent
of the station skewness estimator y [Griffis, 2003].

[s] B17 recommends approximating MSEy as a function
of the sample skew and sample size using the equation
provided therein, which was based on empirical values
reported by Wallis et al. [1974]. This approximation yields
relative errors as large as 10% within the hydrologic region
of interest with log space skews |y| < 1.414 [Griffis, 2003].
Griffis [2003] generated 10 million replicates for different
cases to allow derivation of a more accurate and smooth
approximation consistent with the asymptotic variance for
provided by Bobée [1973]. She obtained

MSE; = L%Jra(zv)} [1 + (2+b(N))72+<£+C(N))V4}
)

where a(N), b(N), and ¢(N) are correction factors for small
samples:

17.75 50.06
a(N) =— 2 + e
393 3097 37.1
b(N) =So3 ~ o6 T oo
6.16 36.83 66.9
c¢(N) = TN0s6 TNz T NTes”
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This approximation was developed for systematic record
lengths N > 10 and |y| < 1.414. Within that range, the largest
relative error is —0.62%. In practice, a reasonable estimator
of the true skew vy should be employed in equation (2).

[o] The regional skew may be obtained from the skew
map provided in B17, which was originally developed by
Hardison [1974]. The standard error of the map is reported to
be 0.55, indicating that MSE; is approximately 0.302.
Tasker and Stedinger [1986] showed that the B17 estimate
of map error is most likely too large; in that study, their
regional skew had a MSE of 0.11. Values of the same order
are reported by Martins and Stedinger [2002] and Reis et al.
[2003]. Those studies indicate that the estimate of the
standard error of the regional skew is reduced when one
accounts for the actual sampling error in the at-site skewness
estimators used to construct a regional skewness estimator.

[10] Reducing the variance of the regional skew implicitly
increases the hydrologic information represented in that
skewness estimator. Given N years of record at station x,
equations (1) and (2) are used to weight the station skew with
the regional skew to obtain the minimum MSE weighted
skewness estimator G with precision [Griffis, 2003]:

MSE;MSE¢ 1 1 )
MSE; = v = ) 3
¢ MSE; + MSEg {MSEQ * MSEG} (3)

Using MSE¢;, from equation (3), the effective number e of
additional years of record provided by a regional skew
estimator with a known variance is defined as the solution of

MSEg = MSE;(N +e,v), (4)

wherein v is the true skew employed to compute the MSE of
v. In this way, the effective record length e of the regional
skew is defined as the additional number of years of record
needed to provide an at-site skewness estimator ¥ with
precision MSEg. Use of equation (4) requires knowledge of
the true skew <y, and y was known in the Monte Carlo
analysis presented in this paper; however, in other applica-
tions, a reasonable estimator of y would need to be
employed.

2.2. Low Outlier Identification

[11] Prior to combining the sample skew with the regional
skew, B17 recommends using the sample moments of the
complete sample to determine thresholds for the identifica-
tion of low and high outliers. In this paper it is assumed that
historical information is unavailable, and therefore no
adjustments for high outliers can be made, and only tests
and adjustments for low outliers are conducted. If low
outliers are identified, adjustments to the frequencies of
the flood flows above the threshold should be made to
capture the actual frequency of floods in the sample.

[12] Low outliers in log space are identified by specifying
a “truncation level™:

X, =X — KyS, (%)

which is defined by the one-sided 10% significance level for
a P3 distribution with zero skew (i.e., a two-parameter
normal distribution). The 10% frequency factors Ky for
normal data as a function of sample size (for 10 < N < 149)
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are tabulated in B17. These values of Ky may be computed
using the compact formula for 5 < N < 150 [Stedinger et
al., 1993, p. 18.45]:

Ky = —0.9043 + 3.345,/log,, (N) — 0.4046log,, (N).  (6)

B17 states that this procedure is appropriate for use with
LP3 distributions with skews on the interval [—3, +3]. Any
values below the truncation level X; are considered to be
low outliers and are censored in the analyses reported here.
The selection of this outlier test by the B17 committee is
reviewed by Thomas [1985]. Spencer and McCuen [1996]
argue that a more appropriate frequency factor could be
computed to handle different values of skew, detection of
multiple outliers, and alternative significance levels.
Identification and the censoring of low outliers frees a
fitting procedure from the constraint that the LP3 distribu-
tion should describe both the distribution of the smallest and
largest floods.

3. Conditional Probability Adjustment

[13] A conditional probability adjustment (CPA) of the
frequency curve is recommended by B17 when low outliers
are censored, when the record contains zero flows, or when
there is a recording threshold resulting in a truncated data
set. These critical events are censored from the record of
size N and a conditional P3 distribution F(x) is fit to the
retained logarithms of the annual maximum floods that
exceeded the truncation level X;. B17 does not recommend
using CPA when more than 25% of the observations are
censored. CPA was originally developed by Jennings and
Benson [1969] to account for the removal of zero-flow
events from a systematic record before fitting the LP3
distribution. For LP3 and lognormal data, Kroll [1996]
compares the precision of low-flow quantile estimates
obtained with CPA to maximum likelihood estimation
(MLE), log-probability-plot regression (LPPR), and partial
probability weighted moments (PPWM) estimators. For
samples censored at the 5Sth, 20th, and 45th percentiles,
Kroll [1996] observed that with LP3 data CPA performed
poorly compared with MLE, LPPR, and PPWM when
estimating quantiles just above the censoring threshold.

[14] The probability that a given event exceeds the
truncation level is estimated as p, = r/N. The formula for
conditional probability expressed in terms of exceedance
probabilities indicates that the flood flows exceeded with a
probability p < p, in any year are obtained by solving p =
pell — F(x)] to obtain F(x) =1 — p/p.. The B17 CPA uses
this equation to compute the logarithms of the flood flows
(Qo_gg, Qo_go, and QO.SO) which will be exceeded with
probabilities p = 0.01, 0.10, and 0.50. These three values
are used to define a new P3 distribution for the logarithms
of the flood flows which reflects the unconditional frequen-
cies of the above threshold values. The new P3 distribution
is defined by the “synthetic”’ moments

Goyn = —2.50 + 3.12[logq (Q0.99/Q0.50)]/[10g10 (Qo.90/ Q0.50)]
Soyn = [log;9 (Q0.99/00.50)]/ [Ko.99 — Ko.50] (7)

Mgy = log; (Qo.50) — Ko.50Ssyn,
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where K 99 and Ky 5o are P3 frequency factors dependent on
the synthetic skew and the exceedance probability, 0.01 or
0.50, respectively. The approximation for G is said to be
appropriate for skew coefficients on the interval [—2.0,
+2.5] [I[ACWD, 1982]. The absolute error in the computed
skew is an unnecessarily large 0.04 for |y| < 0.2, which are
in the center of the hydrologic region of interest [Griffis,
2003].

[15] The final fitted distribution used to estimate the
frequency of the » above-threshold values is given by the
synthetic mean, synthetic standard deviation, and a weighted
skew obtained by combining the synthetic skew with a
regional skew using equation (1).

4. Probability Plot Regression

[16] Probability plot regression (PPR) is a statistical
estimation method that has been employed with censored
water-quality, low-flow, and flood data. PPR fills in missing
observations and zeros using estimates of the missing
observations obtained by a regression of the observed
values against their normal scores or another appropriate
variate. The method was formalized by Gilliom and Helsel
[1986] and was later studied by Helsel and Cohn [1988] and
Kroll and Stedinger [1996]. This method also appears in the
statistical literature where it has been applied to normal
samples [David, 1980]. Hydrologic applications of the
method have employed a lognormal model, though other
models could be adopted. Here an extension of PPR for use
with P3 distributions is proposed.

[17] Cumulative plotting positions for the censored obser-
vations (low outliers) are computed employing the Blom
formula as

pi=(e/N)[(i k) /(N = e +1/)] (8)

for i = 1...c, where ¢ is the number of censored
observations and N is the total number of observations in
the sample [Hirsch and Stedinger, 1987]. If r is the number
of retained observations, then N = ¢ + . The quantity ¢/N is
the probability a flood is below the threshold. The estimate
of the probability that a flood exceeds the threshold is 7/N =
1 — ¢/N so that the plotting positions for the r retained
observations beginning with a cumulative probability of ¢/N
can be computed as

pi=(c/N)+ (1 =c/N)[(i k) (N =c+'/)]  (9)

for i = 1...r, where i = 1 corresponds to the smallest
retained observation [Stedinger et al., 1993, p. 18.42].
Hirsch and Stedinger [1987] and Kottegoda and Rosso
[1997, p. 496] employ equations (8) and (9) with historical
information.

[18] The standard P3 variates K,, are determined for all
observations using the assigned plotting positions and the
regional skew. (K, values employed in this study were
computed using the MATLAB command “gaminv.””) The
two moments p and o relating the standard P3 variates and
the » above-threshold observations are determined using
ordinary least squares with the simple linear model

xp = p+ 0k, (y). (10)
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Equation (10) is also used to estimate the values of the
censored observations using the standard P3 variates based
on plotting positions from equation (8) and the regional
skew. These estimates are combined with the retained
observations to form a completed data set for which the
moments of the distribution are computed using the
traditional B17 estimators.

[19] A weakness of the PPR method is that the magni-
tudes assigned to the low outliers are not affected by the
value of the censoring threshold, and thus some critical
information is lost describing the possible values of those
censored observations. This concern is illustrated by the fact
that censored observations can be assigned values that
exceed the threshold. However, this does not appear to be
a significant problem with typical samples and may make
our PPR flood estimators more robust in this application.

[20] PPR should perform well when the regional skew is
relatively accurate so that the use of the regional skew adds
little error to the estimated moments of the distribution and
when a modest number (<25% of sample) of outliers are
identified. For example, Kroll and Stedinger [1996] show
that PPR works well for such cases with censored normal
samples.

5. Expected Moments Algorithm

[21] The expected moments algorithm (EMA) was pro-
posed by Cohn et al. [1997] as an alternative to maximum
likelihood estimation (MLE) and the B17 methodology
for incorporation of historical data into flood frequency
analyses. EMA employs an iterative procedure for computing
parameter estimates using censored data. The process begins
with an initial set of parameter estimates obtained using
the systematic stream gage record and then updates the
parameters using the known magnitudes of historical peaks
and the expected contribution to the moment estimators of the
below-threshold floods.

[22] For an LP3 distribution, Cohn et al. [1997] demon-
strated that EMA is more efficient than the B17 method for
using historical data and is nearly as efficient as MLEs with
cases for which the MLE procedure converged reliably.
Their results were limited to estimators of the 99th percen-
tile; England et al. [2003b] further evaluated the use of
EMA with historical and paleohydrologic information to
estimate larger percentiles. Application of EMA to practical
cases was investigated by England et al. [2003a]. The
National Research Council [1999] employed EMA for
flood frequency analysis on the American River in Califor-
nia. Jarrett and Tomlinson [2000] used EMA in their study
on the Yampa River in Colorado.

[23] The expected moments algorithm for low outlier
adjustment includes the following steps:

[24] 1. A threshold (X;) is defined below which observa-
tions are considered outliers.

[25] 2. Using the values that exceeded the threshold (X7),
initial estimates of the sample moments ({i;, 61, ;) are
computed as if one had a complete sample.

[26] 3. For iteration i = 1, 2,.. ., the parameters of the P3
distribution (41, Bi+1, Ti+1) are estimated using the previ-
ously computed sample moments:

~ o 20N PSP oA ~ A
Qi) = 4/'Yi iBir = 50:‘%77:41 = fi; — Q1841
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[27] 4. New sample moments ({41, G;r1, Yi+1) are esti-
mated using expected moments such as

Yo evew)

Hip1 =

where N~ represents the number of observations below the
threshold, N is the total number of observations, and E[X}]
is the expected value of an observation known to have a
value below the low outlier threshold X;. The expected
value is a conditional expectation given that X < X., where
X_. denotes the EMA censoring threshold which is defined
here as the smallest retained observation. Use of the
smallest retained observation rather than X; to define
the possible range of censored values made the EMA
algorithm less sensitive to the distribution of low outliers
[Griffis, 2003]. With the current parameter estimates
(&+1, Bir1, Ti+1), the conditional expectation is expressed in
terms of the incomplete Gamma function [Cohn et al., 1997]:

X —
r{ ¢ T,a+1}

I
ey

EXS]=1+8 (12)

[28] The second and third moments are estimated using

T =y 1 07 — ) VE[( -} (3)

. 1 .
Yiet = nai {03 > (- Mi+1)3+N<E[(XL< - M)3] }» (14)
it

wherein ¢, = N*/(N — 1) and ¢3 = N*/[(N — 1)(N — 2)].

[29] Equation (14) neglects regional skewness informa-
tion. B17 recommends weighting the regional skew with the
synthetic skew obtained after adjusting the fitted P3 distri-
bution for low outliers using CPA. The same approach
could be used here to obtain a weighted skewness estimator
G via equation (1) using v, from equation (14) to estimate
y. However, the methodology should be improved by
incorporating the regional skew into the EMA procedure
to ensure that the weighted skew corresponds to the adjusted
mean and standard deviation fit to the data. The suggested
extension of EMA for computing the third moment with
regional skew information is

1

N _\3
Yit1 = m {03 Z(XL> - Hi+1)

+ N<E[ (X7 )] +nGal, }, (15)
where 7n is the additional years of record assigned to the
regional skew. Here ¥, is a weighted skewness estimator.
To ensure that EMA is consistent with Bulletin 17B when
no low outliers are identified (i.e., ¥,+; = G in equation (1)),
the required value of # is

_ y MSE;

_ . 1
"= Y MSE, (16)
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In this sense, n is the regional skew weight measured in
years.

[30] The expected contribution to the second and third
central moments (m = 2 and 3, respectively) of the below-
threshold values is [Cohn et al., 1997]

XL‘_T .
m _F{ 5 70<+J}

E[(X; —w)" Z( ) )" j?- (17)
” r e

Steps 3 and 4 are repeated until the parameter estimators for
the P3 mean, standard deviation, and skew values converge.

[31] Cohn et al. [1997] discussed the use of EMA with
historical data. Equations (11), (13), and (15) can be
modified to include historical data by adding the terms
NuE[(Xz — w)™] and ¢,,> (X7 — fi+1)", where the subscript
H denotes the historical threshold and m is the moment
being evaluated. In equations (13) and (15), the latter term is
multiplied by an appropriate bias-correction factor reflecting
the use of a mean estimator [i;+;. In this case, the correction
factors ¢,, should be based upon the total systematic record
length plus the number of observed historical floods as
recommended by Cohn et al. [1997].

[32] Confidence intervals for flood quantiles based upon
EMA flood quantile estimators were developed by Cohn et
al. [2001]. This is a feature lacking in the B17 approach
when historical data or low outliers are present, as well as
proposed improvements for regular data sets [Chowdury
and Stedinger, 1991; Whitley and Hromadka, 1999].

5.1. Bias-Correction Factors

[33] The Cohn EMA procedure includes bias-correction
factors which ensure that the computed moments coincide
with those used in B17 when no historical information is
employed [Cohn et al., 1997, p. 2091]. Their bias-correction
factors are

&= (N5 +N7)/(Ns +N” —1)
(18)
= (N5 +N>)*/[(N5 + N> = 1) (N5 + N> —2)].

These scale the summation terms of the observed peaks in
the computation of the variance and skew, respectively.
Here Ny is the number of observed peaks in the systematic
record below the historical threshold and N~ is the number
of observed peaks in both the systematic record and
historical period which exceed the historical threshold.
The bias-corrections do not include the number of censored-
historical values, because if the censoring threshold is quite
high, they would provide very little information pertaining
to the mean.

[34] In the extension of EMA for use with low outliers,
the corrections are only applied to the observed values
greater than X;. However, unlike the historical information
case, additional years of information are not added to the
record when adjusting for low outliers: N remains
unchanged as does the relative information in the sample.
When low outliers are censored from the record, the number
of above-threshold values decreases and thereby increases
¢, and ¢z in equation (18); thus the relative weight placed
on the above-threshold values would increase. This does
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not make any sense. The computed weights in equations
(13) and (14) avoid these inconsistencies. These equations
are consistent with traditional moment estimators and the
EMA estimators currently used with historical information
and reflect a reasonable bias correction for the use of the
“sample” average [i,+; in the summation terms in the
estimators of the second and third moments.

[35] In equations (13) and (14), the bias-corrections c,
and ¢z are only applied to the summation terms involving
the above-threshold observations. The expectation of the
contribution from the low outliers to the variance and skew
coefficient are computed using equatlon (17). Equation (17)
was derived (Appendix A) assuming the true mean p is
known. Thus it truly is the expectation of E[(X; — p)”] for
m = 2 or 3. Therefore application of a bias correction to
these terms is not appropriate. The correction is appropriate
for sample estimators (X; — X)” which suffer from the
correlation between X; and X. Similarly, the regional skew
estimate is assumed to be unbiased, so when included in the
EMA algorithm, as in equation (15), this term should not be
adjusted for bias.

5.2. Weighted Skew Constraints

[36] Negatively skewed P3 distributions have an upper
bound but are unbounded in the lower tail. As a result, it is
possible for the skew to become increasingly negative with
each EMA iteration. In the literature, population skews are
commonly restricted to values of +1.0 [Chowdury and
Stedinger, 1991; Spencer and McCuen, 1996; Cohn et al.,
1997; Whitley and Hromadka, 1999; McCuen, 2001].
Chowdury and Stedinger [1991] restrict generated sample
skews to be less than £1.5. It is unlikely that the population
skew would ever fall below —1.4, corresponding to shape
parameter o = 2 and a P3 distribution whose density
function goes to zero linearly at the upper bound. Therefore
it is reasonable to restrict the skew computed by EMA to be
greater than or equal to —1.4. This skew constraint is
imposed by performing a check at the end of each iteration
to see if ¥4 > —1.4. If ¥4 < —1.4, then ¥, is set equal to
—1.4 and the algorithm proceeds. Still, in some extreme
cases, EMA fit a P3 distribution with an upper bound within
the observed data, and this too was a concern.

[37] EMA utilizes the method of moments, which sum-
marizes the information in the data set by the sample
moments. Thus it is quite possible for the computed upper
bound to be smaller than one or more of the observations.
The upper bound must be at least as large as the largest
observation for the fitted distribution to be valid; because
of the interest in larger flood quantiles, we added this
additional constraint to the estimation procedure.

[38] For ;1 <0, the upper bound constraint is checked at
the end of each iteration by computing the upper bound (7)
of the distribution corresponding to the updated sample
moments ({i;+1, G;+1, Yi+1), Where

’T':lliﬂ _2[6#1/’3’#1]- (19)
[39] The upper bound 7T is compared to the maximum

observation Xp,ax. If T < xmax, then the upper bound is within

the data, and the skew is recomputed as

(20)

Yiy1 = 25i+1/(i1i+1 - xmax)~
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The next iteration of the algorithm uses this adjusted skew,
which must equal or exceed both a value of —1.41 and the
value in equation (20).

[40] In a few cases with positive skews, the lower
bound T exceeded the smallest observation; however, this
is generally not a concern in estimating floods. This
would be a concern in low-flow analyses and similar
constraints could be implemented. The P3 distribution
fitted using the EMA algorithm would not be used to
describe the frequency of flood flows below the censoring
threshold X, because the model has not attempted to
reproduce the distribution of floods in that range.

6. Monte Carlo Analysis

[41] A Monte Carlo experiment was conducted to com-
pare the following seven P3 fitting methods: (1) MOMn:
method of moments utilizing all of the sample data, with no
weighting of the sample skew with the regional skew; (2)
CPA: conditional probability adjustment as recommended
by B17 for adjusting fitted sample parameters following the
identification of low outliers; (3) CPAc: conditional proba-
bility adjustment with a lower bound of —1.4 on the fitted
skew and a constraint that the upper bound must equal or
exceed the largest observation; (4) EMAbc: expected
moments algorithm for low outlier adjustment with the
incorporation of regional skew following the B17 recom-
mendation summarized by equation (1) with a lower bound
on the fitted skew and a constraint on the upper bound;
(5) PPR: probability plot regression used to fill in values of
censored observations (the final P3 parameters are deter-
mined using method of moments with the completed
sample); (6) MOM: method of moments utilizing all sample
data with weighting of the station skew with the regional
skew as recommended by B17; and (7) MOMc: method of
moments utilizing all sample data with weighting of the
station skew with the regional skew, with a lower bound on
the skew and a constraint on the upper bound.

[42] Because the results from EMA can be improved by
imposing a lower bound on the skew and a constraint on the
upper bound, it is likely that the performances of CPA and
MOM would also be improved by the same constraints. The
methods CPAc and MOMc were used to check the affect of
the constraints on the performance of CPA and MOM,
respectively.

[43] The seven parameter estimation methods were com-
pared using the mean square error (MSE) and bias of the
quantile estimators of a range of quantiles. Results for the
100-year event (Xy99) are reported here. The MSE was
computed as

1. . 2
MSE = > (%,(1) - %,)". (21)

i=1

The MSE performance measure in log space reflects the
precision with which the fitted P3 distributions approximate
the true quantiles of the parent population from which the
samples were generated. Kroll and Stedinger [1996]
compare real- and log-space MSEs.

6.1.

[44] Data for the experiment were generated from P3
populations with sample sizes of 10, 25, 50, and 100 and

Data Generation

GRIFFIS ET AL.: LP3 QUANTIFIER ESTIMATES WITH REGIONAL SKEW INFORMATION

W07503

log space regional skews between —1.0 and +1.0. For each
sample, possible population skews were randomly generat-
ed about the specified regional skew with a specified
variance using the methodology proposed by Chowdury
and Stedinger [1991]. If the regional skew was negative,
then the population skews were randomly generated from a
gamma distribution with a lower bound of —1.4. If the
regional skew was positive, then the population skews were
generated from a gamma distribution with an upper bound
of 1.4. For regional skews of zero, the population skews
were generated from a normal distribution. Samples gener-
ated from a P3 distribution with a mean of 3.5, a standard
deviation of 0.26, and the specified population skew dis-
tributions with variances of 0.010, 0.100, and 0.302 are
considered. The Monte Carlo analyses presented in this
paper consider only the bias and mean square error of
quantile estimators, so the choice of the mean and variance
of the P3 distribution is not critical to the problem. For
computation of weighted skewness estimators, the estima-
tion error of the regional skew MSEg is equated to the
specified variance of the population skews Var[y].

[45] This study considers regional skews in the range
[—1.0, +1.0]. Hardison [1974] reports mean regional skew-
ness values in the range [—0.5, +0.6], with a standard error
for individual station estimators of 0.550 (corresponding to
MSEg = 0.302). For a partition of the United States into 14
regions, Landwehr et al. [1978] report mean regional skew
values in the range [—0.4, +0.3]. The wider interval for
regional skews of [—1.0, +1.0] was adopted to allow
exploration of a broader range that encompasses the most
likely values.

[46] Another issue would be a realistic range for the
population skews for an individual station. As noted above,
—1.4 is a realistic lower bound. The range [—1.4, +1.4] is
certainly within the distribution of site-to-site variability
observed in Hardison’s [1974] estimates and substantially
larger than that suggested by MSE; = 0.100 as reported by
Tasker and Stedinger [1986] and Reis et al. [2003]. Thus it
is certainly reasonable to place bounds of +1.4 on generated
population skews so as to restrict the analysis to reasonable
values.

6.2. Results

[47] The Monte Carlo experiment was conducted for
four types of samples: (1) P3 distributed data using all
generated samples, (2) P3 distributed data using only
samples containing low outliers, (3) contaminated samples,
and (4) P3 distributed samples with censoring at the 20th
percentile. The following sections discuss the four sets of
results. The design of the experiment was the same for
each; differences resulted from the treatment of the samples
after they were generated. Only P3 distributed samples
containing at least one low outlier are considered in case 2
to see if averaging results over all of the generated samples
masks the value of low outlier procedures. To model real
flood data and better assess the value of low outlier
procedures, P3 distributed samples are contaminated in
case 3 by reducing the smallest observations by a specified
factor. Finally in case 4, the effect of an increased
truncation level on the low outlier adjustment methods
was assessed using a 20% frequency factor instead of the
frequency factor recommended by B17, which would
censor only one in 10 normal samples.
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Figure 1. MSE of X9 for MOMn and MOMc quantiles estimators in P3 distributed samples as a

function of NV and Var[y] for G = 0.

6.2.1. P3 Distributed Data Using All Generated
Samples

[48] Using all generated samples, regardless of whether
they contain low outliers or not, illustrates the benefit of
weighting with a regional skew and allows the overall need
for and effect of the low outlier adjustment to be described.
Comparisons of quantile estimates were made for all com-
binations of sample size, regional skew, and population
skew variance using M = 5000 replicates. Figure 1 illus-
trates the MSE of the X o9 estimators using MOMn and
MOMc with a regional skew of 0 as a function of sample
size N and the variance of the population skew Var[y].

Figures 2 and 3illustrate the MSE and bias, respectively, of
the Xy 99 estimators using all seven fitting methods with a
sample size of 25 years and Var[y] = 0.100. (Griffis [2003]
provides figures illustrating the MSE and bias of the Xj 99
estimators for all combinations of sample size, regional
skew, and population skew variance.)

[49] In samples of size 25 with a regional skew of —1.0,
roughly 42% of the samples contained at least one low
outlier; the fraction of samples containing outliers increases
to 55% in samples of size 50. With a regional skew of +1.0,
the percentage of samples containing low outliers is less
than 1%.

0.06
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0.05
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-0.2

0.0 0.2 0.5 1.0

Log Space Skew (G)

Figure 2. MSE of X 99 estimators for each method in P3 distributed samples (N = 25, Var[y] = 0.100).
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Figure 3. Bias of X 99 estimators for each method in P3 distributed samples (N = 25, Var[y] = 0.100).

6.2.1.1. Impact of Constraints

[s0] Table 1 reports the frequencies with which the lower
bound on the weighted skew and the constraint on the upper
bound are active with each fitting method for specified
sample sizes, regional skew values, and population skew
variances. Except for the MOMn results, the frequencies for
sample size-regional skew combinations not included in the
table are zero (in 5000 replicate samples); the constraints
were active only in samples with a regional skew of —1.0 (an
extreme case), except for N = 100, where a skew of —0.5
with a variance of 0.302 (an extreme case) also generated
upper bound constraint violations. Violation of the lower
bound constraint on the weighted skew only occurred with
Var[y] = 0.302 (again an extreme case). Although PPR was
not constrained, the frequencies with which the computed
upper bound fell within the sample data are also reported.

6.2.1.2. Value of Regional Skew

[51] Weighting the sample skew with an informative
regional skew dramatically reduces the MSE and bias of
the Xoo9o estimators. In Figure 1 the large differences
between the MSE of the MOMn and the MOMc quantile
estimators illustrate the significant benefit of weighting a
station skew with an informative regional skew. The MOMn
estimator does not utilize regional skew, but the MSE of the
MOMn estimator increases with Var[y], and thus MSEg,
due to the character of the generated samples. The benefit of
weighting with an informative regional skew is evident as
the relative difference between the MSE of the MOMn and
MOMc estimators increases as the variance of the popula-
tion skew decreases (i.e., the precision of the regional skew
increases). Furthermore, as skew estimates associated with
smaller samples have greater error, the benefit of weighting

Table 1. Frequencies (%) of Invoking Weighted Skew and Upper Bound Constraints in P3 Distributed Samples

G<-14 # < Xinax
Sample Regional
Size Skew CPAc EMAbc MOMc MOMn CPAc EMAbc MOMc PPR
Population Skew Variance = 0.010
10 -1.0 0.0 0.0 0.0 2.5 1.7 1.1 0.9 0.9
25 —-1.0 0.0 0.0 0.0 8.3 2.7 1.9 1.5 1.7
50 -1.0 0.0 0.0 0.0 12.7 2.7 1.7 1.5 1.7
100 -1.0 0.0 0.0 0.0 14.1 1.8 1.3 1.2 1.3
Population Skew Variance = 0.100
10 -1.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0
25 -1.0 0.0 0.0 0.0 8.5 0.0 0.1 0.2 0.0
50 -1.0 0.0 0.0 0.0 11.8 0.1 0.3 0.5 0.2
100 -1.0 0.0 0.0 0.0 14.5 0.1 0.8 1.2 0.5
Population Skew Variance = 0.302
25 -1.0 0.0 0.0 0.0 9.2 0.0 0.1 0.2 0.0
50 -1.0 0.0 0.4 33 13.1 0.0 0.3 1.0 0.1
100 -1.0 0.0 1.6 6.2 16.3 0.1 0.9 23 0.2
100 -0.5 0.0 0.0 0.0 6.4 0.0 0.0 0.3 0.0
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with a regional skew is more evident in these samples.
Tasker [1978] demonstrates the value of reasonable weight-
ing of at-site and regional skewness estimators. However,
his Monte Carlo analysis only included an approximation of
the optimal weighting factors for MSEs = 0.302, which is
the largest value considered here.

[52] The relative differences between the MOMn and
MOMc estimators shown in Figure 1 for a regional skew
of 0 are typical of other values of regional skew, with the
only difference being changes in the actual values of the
MSE. In terms of MSE, the value of weighting decreases
with sample size. In Figure 1 for a regional skew of 0 with
an estimation error of 0.100 and an effective record length
e =~ 60, the MSE is reduced approximately 31% with N =10
but only 18% with N = 100. The value of weighting is
greater in cases where e> N and diminishes as N
approaches or exceeds e. However, for a regional skew of
0 with an estimation error of 0.302 which has an effective
record length e ~ 20, the MSE is reduced approximately
22% with N = 10 and 7.5% with N = 100. The value of
weighting is smaller with a less informative regional skew.

[53] For a fixed value of Var[y], the value of weighting
also increases with the absolute value of the regional skew
coefficient because the variance of the at-site skew is larger
when |y| is larger. As a consequence, the value of e
increases. For samples of size 50 with Var[y] = 0.100, the
value of e increases from roughly 60 years with a regional
skew of 0 to almost 112 years with a regional skew of £1.0.
As a result, in samples of size 50 with Var[y] = 0.100, the
MSE is reduced an average of 30% by weighting the sample
skew with a regional skew of £1.0 (e =~ 112 years) and is
reduced roughly 23% using a regional skew of 0 (e =
60 years). However, in Figure 2 for samples of size 25, the
MSE is reduced an average of 31% by weighting the sample
skew with a regional skew of £1.0 (e ~ 128 years) and is
reduced roughly 30% using a regional skew of 0 (e =
60 years). The increased value of weighting with a larger
regional skew coefficient is negligible in samples of size
N < 25 in Figure 2, because for all values of skew
considered, the information in the regional skew over-
whelms the sample skew.

[s4] Figure 3 shows that use of a regional skew generally
reduces the bias of the Xjo99 estimators, particularly for
larger regional skews. In samples of 100, the use of a
regional skew generally resulted in increased bias of quan-
tile estimators because the sample size exceeded the effec-
tive record length of the regional skew. While bias is a part
of MSE, it also describes a different character of the
estimators and can be worthwhile considering. However,
because this analysis employs base 10 logarithms, the worst
biases reported in Figure 3 correspond to an error on the
order of 5% of the real space flood quantiles. Therefore
none of the biases is a significant part of the estimators’
MSE.
6.2.1.3. Regional Skew and Skew Constraints

[s5] As reported in Table 1, averaging the sample skew
with a regional skew in MOMc significantly reduces the
frequency with which the computed upper bound falls
within the sample data when compared with using the
pure method of moments (MOMn). Using an informative
regional skew coefficient with Var[y] < 0.100, the lower
bound on the weighted skew and the upper bound constraint
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have little effect on the CPA and MOM quantile estimators
as the lower bound constraint on the weighted skew is never
binding and the constraint on the upper bound is invoked
infrequently, and only for extreme cases when the regional
skew has a value of —1.0. The constraint is invoked more
frequently with Var[y] = 0.010 than with Var[y] = 0.100 for
all methods utilizing a weighted skew estimate, because the
weighting scheme places much more weight on this unre-
alistic regional skew than the sample skew. Therefore the
weighted skew estimate will have a value approximately
equal to the regional skew of —1.0. Cases with more
realistic regional skew values resulted in no violations of
the constraint on the upper bound.

6.2.2. P3 Distributed Data Using Only Samples
Containing Low Outliers

[s6] The overall impact of low outlier procedures and the
effect of the choice of quantile estimators are assessed by
comparing the performance of CPA, EMAbc, and PPR with
MOM. Because MOM utilizes all of the sample data, one
might suspect that it would result in the best performance
and thus have the smallest MSE in this case wherein all of
the data are actually from a P3 distribution. As shown in
Figure 2, applying low outlier adjustment methods to P3
data results in no observable loss of overall accuracy in
terms of MSE when all generated samples are considered.
However, averaging the results over all generated samples
masks the actual affect of the low outlier adjustment,
particularly when G > 0.

[57] Because few samples are identified with regional
skew values G > +0.5, the low outlier adjustment proce-
dures are used infrequently and the results from all methods
utilizing regional skew information should coincide. There-
fore low outlier adjustments are relatively insignificant in
this skew range, and regional skew values of +0.5 and +1.0
were omitted.

[s8] Comparisons of quantile estimates were made for all
combinations of sample size and regional skew (G = —1.0,
—0.5, —0.2, 0.0, and +0.2) and population skew variance
using M = 1000 replicates. For only samples containing low
outliers, Figure 4 illustrates the MSE of the Xj 99 estimators
of all seven fitting methods as a function of sample size with
a regional skew of 0 and a population skew variance of
0.100. Figure 5 compares the MSE of the Xj 99 estimators as
a function of regional skew in samples of size 25 with a
population skew variance of 0.100. Figure 6 compares the
MSE of the Xj 99 estimators as a function of Var[y] with a
regional skew of 0. The results for CPAc and MOMc are not
included in Figure 6 because they are identical to the results
of CPA and MOM, respectively, because the constraints are
never binding with G = 0. (Griffis [2003] provides results
for all combinations of sample size, regional skew, and
population skew variance.)

[59] In Figure 4 for a regional skew of 0 with a variance
of 0.100, only in very small samples N = 10 did MOM
significantly outperform the estimators employing a low
outlier adjustment procedure. EMA and PPR outperform
CPA for N < 25. The differences in the MSEs of
estimators that use a weighted skew are negligible with
N > 50. In Figure 5 for samples of size 25 for cases with a
population skew variance of 0.100, EMA and PPR con-
sistently outperformed CPA with reasonable regional skew
values |G| < 0.5.
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Figure 4. MSE of X, 99 estimators for each method in P3 distributed samples containing low outliers

(G = 0, Var[y] = 0.100).

[60] In general, for the cases considered here for P3
distributed samples containing at least one low outlier, the
performance of EMA and PPR were similar in terms of
MSE. EMA and PPR generally did as well as or better than
CPA. In Figure 6 for a regional skew of 0 with a large
variance of 0.302, so that the information in the sample
exceeded the information in the regional skew (i.e., N> e =~
20), CPA, EMA, and PPR generally outperformed MOM.
On the other hand, for a realistic population skew variance
of 0.100 with smaller samples (N < 25) so that e = 60 > N,

MOM had smaller MSEs. Use of EMA results in no loss of
overall accuracy when outliers are identified in P3 distrib-
uted samples of typical size 25 < N < 50) with an
informative regional skew (MSEs = 0.100) and reasonable
skew values (|G| < 0.2), as compared to CPA, or to MOM
with the entire data set.
6.2.3. Contaminated P3 Distributed Samples

[61] Thus far the Monte Carlo analysis of the seven
estimation methods has assumed that the sample data is
truly P3 distributed, which is the underlying assumption of
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Figure 5. MSE of X, 99 estimators for each method in P3 distributed samples containing low outliers

(N = 25, Var[y] = 0.100).
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the methods recommended by B17. However, in reality,
flood records are most likely not truly P3 distributed and
true low outliers can depart significantly from the general
trend of the data. To pursue this real concern, contaminated
P3 samples were considered to illustrate the potential value
of a low outlier detection step and adjustment of the fitted
distribution.

6.2.3.1. Contamination of Samples

[62] Evaluation of several annual maximum flood series
indicates that low outliers typically depart from the general
trend of the data by factors in the range of 2 to 5. (See, for
example, Bulletin 17B, pp. 12—24.) However, observations
are generally not identified as low outliers using equation
(5) unless they differ from the general trend of the data by a
factor of 3 or more. Furthermore, when a sample contains
more than one low outlier, the outliers often depart from the
general trend of the data by the same severity [Griffis,
2003].

[63] For this analysis, P3 distributed samples of size 25,
50, and 100 were generated as described in section 6.1.
Samples of size 10 were omitted from the analysis because
even without contamination, there are insufficient data to
adequately fit a three-parameter distribution to the sample
(although B17 allows such small samples, as did Figures 1
and 4).

[64] To demonstrate that outlier adjustment is truly
advantageous when samples contain real outliers, only
samples that contained a specific number of outliers were
considered. The numerical values of the smallest k = 1, 2,
and 3 observations in the generated P3 distributed samples
of size 25, 50, and 100, respectively, were contaminated
to model real samples containing low outliers. The smallest
k observations in each sample were contaminated by sub-
tracting log(f), equivalent to dividing by a factor f in real
space. The original sample value was replaced by the
contaminated value resulting in a contaminated sample.

[65] To model actual flood records containing low out-
liers a factor f=5 was used to contaminate the generated P3
distributed samples. The moments of the contaminated
samples were used in equation (5) to estimate a low outlier
threshold. P3 distributions were fit to the contaminated
samples using the seven estimation methods. The use of
a large f factor ensured that the contamination always
provided at least one low outlier that would be identified
by equation (5). The results are actually relatively insensi-
tive to the value of f'provided it is large enough to cause the
value to be censored, for then its exact value is ignored.
6.2.3.2. Appropriate Regional Skew

[66] The use of contaminated distributions and the gen-
eral belief that flood records are not truly P3 distributed
raises concerns regarding the value of the regional skewness
coefficients. To reduce the uncertainty in sample skew
estimates, B17 recommends weighting the sample skew
with the regional skew using equation (1). In the absence
of low outliers, the regional skew is weighted with an
unadjusted sample skew estimate obtained using method
of moments. If low outliers are identified, then B17 recom-
mends adjusting the sample moments of the flood record
using CPA. The adjusted sample skew produced by CPA is
then weighted with the regional skew to obtain a weighted
skew estimate for use in the final fitted P3 distribution.
Therefore, if we truly believe that low outlier adjustment is
necessary and appropriate to improve quantile estimates at
the upper end of the distribution, then the regional skew
should be estimated using samples which have been appro-
priately adjusted following the identification of low outliers.
For a study in South Carolina, Feaster and Tasker [2002,
p- 14] observed that the computed regional skewness
coefficients were not sensitive to high and low outliers.

[67] The assumption that regional skew estimates are
obtained from adjusted samples is utilized in the Monte
Carlo analysis in the application of CPA and PPR. This
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Figure 7. MSE of X, 99 estimators for each method in samples with £ = 1, 2, and 3 contaminated

observations (G = 0, Var[y] = 0.100).

same assumption is then appropriate when the regional
skew is weighted with the sample skew obtained using
method of moments (MOM) procedures in the absence of
low outliers. In this Monte Carlo analysis, MOM is also
used to illustrate the value of low outlier adjustments and
uses the same regional skew as the other methods without
the deletion of low outliers.
6.2.3.3. Simulation Results

[68] Comparisons of quantile estimates with the contam-
inated samples were made for all combinations of sample
size (N = 25, 50, and 100), regional skew, and population

skew variance using M = 5000 replicates. Figure 7 compares
the MSE of the Xj, 99 estimators as a function of sample size
with a regional skew of 0 and Var[y] = 0.100. These results
are typical of the X 99 estimators for all combinations of
sample size, regional skew, and population skew variance
considered [see Griffis, 2003]. The results for CPAc and
MOMc are not shown in Figure 7 because they are equiv-
alent to CPA and MOM, respectively, as the constraints are
never binding with a regional skew of 0 and Var[y] < 0.100.

[69] Table 2 reports the frequencies with which the lower
bound on the weighted skew and the constraint on the upper

Table 2. Frequencies (%) of Invoking Weighted Skew and Upper Bound Constraints in Samples With &k = 1, 2, and 3

Observations Contaminated

G<-—14 % < X
Sample Regional
Size Skew CPAc EMAbc MOMc MOMn CPAc EMAbc MOMc PPR
Population Skew Variance = 0.010
25 —-1.0 0.0 0.0 0.0 92.7 4.0 1.7 0.0 1.1
50 -1.0 0.0 0.0 0.0 99.1 43 1.4 0.0 1.3
100 -1.0 0.0 0.0 0.0 100.0 25 1.4 0.0 1.1
Population Skew Variance = 0.100
25 -1.0 0.0 0.0 0.0 92.1 0.0 0.0 0.9 0.0
50 -1.0 0.0 0.0 0.0 98.9 0.0 0.3 2.7 0.1
100 -1.0 0.0 0.0 0.0 99.8 0.0 0.9 10.3 0.5
100 —0.5 0.0 0.0 0.0 99.4 0.0 0.0 1.7 0.0
Population Skew Variance = 0.302
25 —-1.0 0.0 0.0 0.0 90.1 0.0 0.0 4.7 0.0
25 —0.5 0.0 0.0 0.0 96.1 0.0 0.0 0.1 0.0
50 -1.0 0.1 0.7 73.1 97.3 0.0 0.3 12.8 0.0
50 —0.5 0.0 0.0 0.0 94.3 0.0 0.0 5.0 0.0
50 —0.2 0.0 0.0 0.0 91.0 0.0 0.0 0.5 0.0
100 -1.0 0.0 2.0 87.7 97.9 0.1 1.2 22.7 0.2
100 —0.5 0.0 0.0 0.0 95.8 0.0 0.0 30.7 0.0
100 —0.2 0.0 0.0 0.0 91.9 0.0 0.0 16.9 0.0
100 0.0 0.0 0.0 0.0 88.4 0.0 0.0 9.8 0.0
100 0.2 0.0 0.0 0.0 80.9 0.0 0.0 33 0.0
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bound are invoked by each fitting method. Except for the
MOMn results, the frequencies for sample size-regional
skew combinations not included in the tables are zero (in
5000 replicate samples). With an informative regional skew
(Var[y] < 0.100), the lower bound on the skew is never
binding and the upper bound constraint is binding only in
samples with a regional skew of —1.0 (an extreme case),
except for N = 100 where a skew of —0.5 with a variance of
0.100 also generated upper bound constraint violations for
MOMc. Although PPR was not constrained, the frequencies
with which the computed upper bound fell within the
sample data are also reported.

[70] Low outlier adjustment dramatically reduces the MSE
of the Xy 99 estimators in contaminated samples. In Figure 7
for a regional skew of 0 with a population skew variance of
0.100, the large differences between the MSE of the MOM
estimator and the MSE of CPA, PPR, and EMA estimators
illustrates the advantage of adjusting for true low outliers. In
samples of size 25, the MSE is reduced an average of 60% by
adjusting for low outliers versus using MOM. The value of
adjusting for low outliers decreases with sample size, but the
reduction is still tremendous; the MSE is reduced an average
of 40% with outlier adjustment in samples of 100. In all
cases considered, the differences in the MSEs of the X{ 99
estimators using the low outlier adjustment methods are
modest. As the contaminated samples model the character
of some real data sets, these results indicate that adjustment
for low outliers is advantageous when fitting P3 distributions
to annual maximum flood series.

6.2.4. Excess Censoring From P3 Distributed Samples

[71] Following B17 recommendations, the low outlier
threshold X} is defined by the 10% censoring level across
samples of normal data. For samples of size N = 25, when
one observation in 10 samples is censored, this corresponds
to censoring the 0.4th percentile. It is likely that the differ-
ences in the performance of the estimation methods are
small because low outliers were identified in few samples,
and a relatively small fraction of an individual sample was
censored. In section 6.2.1 for P3 distributed sample sizes of
25, 50, and 100, the maximum number of low outliers
identified were 2, 3, and 4, respectively, with extreme
regional skews of —1.0. These correspond to 8%, 6%, and
4% of the sample values being censored. Kroll and
Stedinger [1996] compare several quantile estimation
methods, including a lognormal MLE and a log PPR, using
censored data. They found there was little difference be-
tween the MSEs of the MLE and PPR estimators when
censoring at or below the 20th percentile for N = 10, the
40th percentile for N =25, and the 60th percentile for N =50.

[72] To see if increased censoring would result in more
noticeable differences in the performances of the low outlier
adjustment procedures, the Monte Carlo analysis was con-
ducted using a censoring threshold at the 20th percentile of
the flood distribution. A higher censoring level was not used
because CPA for low outlier adjustment is not recommen-
ded by B17 when more than 25% of the sample is censored.
Data were generated from P3 populations using the method
described in section 6.1 for sample sizes 25, 50, and 100.
The analysis is the same as that in section 6.2.1; all that is
changed is the censoring threshold.

[73] Low outliers were identified using equation (5) as
recommended by B17. Use of this equation requires an
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estimate of the frequency factor. Equation (6) assumes a
normal distribution and thus is only dependent on the
sample size. The value of the frequency factor increases
with sample size. This results in a smaller truncation level
X, as defined by equation (5), and thus a smaller percentile
for the censoring threshold as N increases. Results of Kroll
and Stedinger [1996] indicate that this is wrong: As N
increases, an increasing fraction of the sample should be
censored because there are still enough observations to
obtain a good estimator. It is also reasonable that more
outliers would be identified in samples with larger skew
values, and thus the estimate of the frequency factor should
depend on the skew, as suggested by Spencer and McCuen
[1996].

[74] In order to censor 20% of the sample, a standard P3
frequency factor defined by the 20th percentile was esti-
mated as a function of the regional skew in place of
equation (6). Thus the censoring threshold was defined to be

X, =X — 8Kp20(G). (22)

[75] Comparisons of quantile estimates were made for all
combinations of sample size (N = 25, 50, and 100), regional
skew, and population skew variance using M = 5000
replicates. Figure 8 illustrates the MSE of the X, 99 estima-
tors of all seven fitting methods for samples of 25 and a
population skew variance of 0.100. Figure 9 illustrates the
MSE of the X 99 estimators as a function of sample size and
population skew variance with a regional skew value of 0.
The results for CPAc and MOMc are not shown in Figure 9
because they are equivalent to CPA and MOM, respectively,
because the constraints are never binding with a regional
skew of 0. Figure 10 illustrates the bias of the X9
estimators in samples of size 25 with a population skew
variance of 0.100. (Griffis [2003] provides results for all
combinations of sample size, regional skew, and population
skew variance.)

[76] Table 3 reports the frequencies with which the lower
bound on the weighted skew and the constraint on the upper
bound are invoked by each fitting method for specified
sample sizes, regional skew values, and population skew
variances. Except for the MOMn results, the frequencies for
sample size-regional skew combinations not included in the
table are zero (in 5000 replicate samples); the constraints
were binding only in samples with a regional skew of —1.0
(an extreme case), except for N = 100 with a population
skew variance of 0.302 (an extreme case) where a regional
skew of —0.5 also generated constraint violations. Violation
of the lower bound constraint on the weighted skew only
occurred with Var[y] = 0.302 (again an extreme case).
Although PPR was not constrained, the frequency with
which the computed upper bound fell within the sample
data is also reported.

[77] The results presented in this section for the MOMn,
MOM, and MOMc estimators are the same as those from
section 6.2.1 (Figures 1, 2, and 3), because the data are P3
distributed and these methods use all of the sample data and
are thus unaffected by the censoring. Therefore the same
observations regarding the benefit of weighting the sample
skew with an informative regional skew pertain.

[78] Because MOM utilizes all of the sample data, one
might suspect that it would result in the best performance
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Figure 8. MSE of X, 99 estimators for each method with 20% censoring from P3 distributed samples

(N = 25, Var[y] = 0.100).

and thus have the smallest MSE in this case, wherein all of
the data are actually from a P3 distribution. In Figure 8 for
samples of size 25 with a population skew variance of
0.100, the MOM estimators had the smallest MSE for G >
—0.2, but the differences between the estimators that use a
weighted skew decrease with the value of the regional skew.
Similar results were observed in this skew range with an
extreme population skew variance of 0.010 for all quantile
estimators except CPA; with a highly informative regional

skew G < —0.5, CPA performed as poorly as MOMn,
which did not employ regional skew information. For all
sample sizes with Var[y] < 0.100, EMA outperforms CPA
and PPR for |G| < 0.2; PPR generally outperforms CPA.
Furthermore, as shown in Figure 10 for samples of size 25
with Var[y] = 0.100, CPA is significantly more biased than
the other methods.

[79] The differences in the estimators that use a weighted
skew are generally minor in cases where the sample size is

0025 EMOMn OCPA EEMAbc OPPR EIMOM
N=25 N=50 N=100
0.020
3 0015 - |
a3
[Sa)
=
0.010 :
0.005 - = |Ii |i
0.000 - : IE L
0010 0100 0302 0010 0100 0302 0010 0.100  0.302
Var[y]

Figure 9. MSE of X 99 estimators for each method with 20% censoring from P3 distributed samples

(G =0).
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Figure 10. Bias of X o9 estimators for each method with 20% censoring from P3 distributed samples

(N = 25, Var[y] = 0.100).

roughly equivalent to or exceeds the effective record length
of the regional skew. As shown in Figure 9 for a given
Var[y], the relative differences between the estimators
decrease as the sample size increases. In Figure 9 for a
regional skew of 0 with a variance of 0.100 (e = 60), the
differences between the estimators are modest for N = 50
and 100. With a variance of 0.302 (e = 20), the differences
are modest for all samples sizes. In general, these results are
typical for G > —0.5 with these sample sizes and population
skew variances.

[so] These results indicate that an appropriate outlier
adjustment method such as EMA results in no loss of
overall accuracy when significant amounts of data are
censored from the sample, in our case 20%. For all sample
sizes with informative regional skew coefficients of rea-
sonable values, EMA provides the most accurate quantile

estimates compared with the other outlier adjustment
methods.

7. Conclusions

[s1] Weighting the sample skew by an informative region-
al skew significantly reduces the MSE of flood quantile
estimators. However, the differences between the MSE of the
estimation techniques that either use the complete sample or
which censor low outliers are generally modest, provided
they employ an informative regional skew and a relatively
small fraction of the sample is censored, as generally occurs
with the Bulletin 17B outlier detection criterion. In these
cases, there is no loss of efficiency when low outlier adjust-
ments are employed in P3 distributed data. However, a higher
censoring threshold would be advisable in that no loss of

Table 3. Frequencies (%) of Invoking Weighted Skew and Upper Bound Constraints With 20% Censoring From P3

Distributed Samples

G<-14

;I\- < xmax
Sample Regional
Size Skew CPAc EMAbc MOMc MOMn CPAc EMAbc MOMc PPR
Population Skew Variance = 0.010
25 -1.0 0.0 0.0 0.0 8.3 12.1 1.8 1.7 0.9
50 -1.0 0.0 0.0 0.0 12.1 14.8 1.8 1.2 1.0
100 -1.0 0.0 0.0 0.0 14.0 9.0 1.5 1.0 0.9
Population Skew Variance = 0.100
25 -1.0 0.0 0.0 0.0 8.8 0.0 0.0 0.1 0.0
50 -1.0 0.0 0.0 0.0 11.5 0.0 0.3 0.6 0.3
100 -1.0 0.0 0.0 0.0 14.3 0.0 0.5 1.4 1.1
Population Skew Variance = 0.302
25 -1.0 0.0 0.0 0.0 8.6 0.0 0.0 0.2 0.0
50 -1.0 0.0 0.0 2.9 12.4 0.0 0.0 0.7 0.0
100 -1.0 0.0 0.0 6.1 16.5 0.0 0.2 2.6 0.3
100 —0.5 0.0 0.0 0.0 6.8 0.0 0.0 0.3 0.0
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precision is likely with LP3 data using an efficient and
flexible estimation procedure such as EMA, whereas sub-
stantially greater protection is provided against low outliers.

[82] Significant reductions in the MSE are observed in
contaminated samples when low outlier adjustment proce-
dures are used in addition to an informative regional skew.
Therefore identification and adjustment for low outliers is
advisable in fitting P3 distributions to real annual maximum
flood series. Regional skew estimates should also be de-
rived using samples adjusted for low outliers.

[83] With respect to the different low outlier adjustment
estimators, EMA is more intuitively appealing than CPA
and PPR. CPA is a relatively ad hoc approach which
includes inconsistencies in its representation of the data.
EMA and PPR both provide a direct fit to the entire data set.
PPR assigns specific values to the low outliers, which may
be larger than the smallest retained observation, which
could be difficult to justify. EMA estimates the expected
contributions of the low outliers to the sample moments in a
very reasonable and consistent framework. Griffis [2003]
compares these methods using real data sets.

[84] EMA has already proven efficient for use with
historical information and can provide good confidence
intervals for estimated quantiles, which CPA and PPR
currently do not. EMA has been successfully generalized
to include regional skew information and to adjust for low
outliers. EMA is more flexible than CPA and PPR and
works as well as or better than CPA at low censoring levels
and better than CPA at higher censoring levels. EMA is also
attractive because it is a logical extension of the method of
moments recommended by B17. Thus it maintains the same
statistical structure and allows for easy implementation
within the existing B17 framework.

[85] The authors of this paper attempted to stay within the
guidelines of Bulletin 17B as much as possible in hopes that
the EMA algorithm would be adopted by the B17 commu-
nity. As currently formulated, EMA has been shown to be as
good or better than B17’s CPA approach for handling low
outliers and more efficient than the current B17 method for
using historical data. Areas of future research could include
evaluation of EMA’s performance when low outlier adjust-
ments are required and both historical and regional skew
information are employed, though the effort hardly seems
necessary.

Appendix A: Derivation of E[(X7 — p)"]

[s6] To update parameter estimates, the EMA for low
outlier adjustment uses the expected contribution of the
below-threshold values in the computations of the second
and third moments. These expected contributions are com-
puted using equation (17). The expectation E[(X; — p)"],
where p is the true mean and m is the moment being
evaluated, can be derived using the P3 probability density
function f,(X) [Cohn et al., 1997]:

E[(X7 — )" o,B,7] = E[(X —p)"| X < X, B,7].  (Al)
Denoting E[(X — )" | X< X_, o, 3, 7] = E[(X — p)"], then
form =1

E[(X — )] = E[(X —7) + (7 — )] = E[X — 1] + E[r — ),
(A2)
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where
E[t—pl=1—-p. (A3)

If E[X — 1] = E(y), then the expected value can be
computed as

t t

E(y) = /yﬁ(y)dy = r(: 3 /6’“(y)(y°‘“) EXP(*%)dy
0

0

(A4)

T T(tq) 0/ (z%) exp(—2)dz,

where z = y/3 = (X — 7)/3. By definition of the incomplete
gamma function [Cohn et al., 1997], equation (A4) reduces
to

_ B, a4-1)
(o)

where ¢ = (X, — T)/3. Substitution of equation (A3) and (AS5)
into (A2) yields

E(y) (AS)

X —T

al
E[(X —p) | X <Xe,o,B,1] = (1—p)+B

(A6)

E[(X; — p)"] can be similarly derived for m = 2 and 3
[Griffis, 2003].
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