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Abstract. Historical and paleoflood information can substantially improve flood
frequency estimates if appropriate statistical procedures are properly applied. However,
the Federal guidelines for flood frequency analysis, set forth in Bulletin 17B, rely on an
inefficient “weighting” procedure that fails to take advantage of historical and paleoflood
information. This has led researchers to propose several more efficient alternatives
including the Expected Moments Algorithm (EMA), which is attractive because it retains
Bulletin 17B’s statistical structure (method of moments with the Log Pearson Type 3
distribution) and thus can be easily integrated into flood analyses employing the rest of
the Bulletin 17B approach. The practical utility of EMA, however, has been limited
because no closed-form method has been available for quantifying the uncertainty of
EMA-based flood quantile estimates. This paper addresses that concern by providing
analytical expressions for the asymptotic variance of EMA flood-quantile estimators and
confidence intervals for flood quantile estimates. Monte Carlo simulations demonstrate
the properties of such confidence intervals for sites where a 25- to 100-year streamgage
record is augmented by 50 to 150 years of historical information. The experiments show
that the confidence intervals, though not exact, should be acceptable for most purposes.

1. Introduction

Researchers, consultants, and water managers in the private
sector as well as state, local, and federal agencies have long
been aware of the importance of historical flood information
when estimating flood quantiles. Potential sources of informa-
tion about past floods include geological evidence from slack-
water deposits and botanical evidence preserved in flood-
caused scars in trees, in addition to the traditional newspaper
accounts and flood lines painted on buildings [Stedinger and
Baker, 1987, and references therein].

This abundance of historical flood information has, in turn,
motivated scientists and engineers to develop statistical meth-
ods that can exploit such nonstandard data to improve flood-
frequency estimates [Leese, 1973; Tasker and Thomas, 1978;
Condie and Lee, 1982; Condie and Pilon, 1983; Condie, 1986;
Stedinger and Cohn, 1986; Hosking and Wallis, 1986a, 1986b;
Cohn and Stedinger, 1987; Lane, 1987; Stedinger and Cohn,
1987; Hirsch and Stedinger, 1987; Jin and Stedinger, 1989; Wang,
1990a, 1990b; Guo and Cunnane, 1991; Kuczera, 1992; Pilon
and Adamowski, 1993; Frances and Salas, 1994; Kroll and
Stedinger, 1996; England, 1998]. Researchers have also at-
tempted to quantify the information content of historical flood
data and have generally concluded that it is surprisingly valu-
able. For example, accurate information about the significant

floods that occurred during the past 200 years (many commu-
nities have such records) can, in theory, provide as much in-
formation about the magnitude of the 100-year flood as can be
extracted from 150 years of continuous gage record [Stedinger
and Cohn, 1987].

The value of historical information, however, depends on
the statistical method used to compute flood-frequency esti-
mates. In particular, the currently accepted flood-frequency
methodology in the United States, described in Bulletin 17B
[Interagency Committee on Water Data (IACWD), 1982], has
been shown to be relatively inefficient when used with histor-
ical information [Condie and Lee, 1982; Stedinger and Cohn,
1986; Lane, 1987].

Several efficient methods for dealing with historical infor-
mation have been proposed, such as maximum likelihood,
probability-weighted moments, and order statistics [Leese,
1973; Stedinger and Cohn, 1987; Wang, 1990a, 1990b; Durrans,
1996; Durrans et al., 1999; Koutrouvelis and Canavos, 1999,
2000]. Most, however, would require modifying or abandoning
the method of moments, Bulletin 17B’s basic statistical struc-
ture. Such a change could create substantial practical and legal
difficulties.

Recently, Lane and Cohn [Cohn et al., 1997; W. L. Lane,
Method of moments approach to historical data, handout,
1995] proposed a less extensive modification to Bulletin 17B,
the Expected Moments Algorithm (EMA). EMA employs Bul-
letin 17B’s methodology and assumptions, even (for the most
part) with respect to historical information. However, EMA
substantially improves upon Bulletin 17B’s efficiency: EMA’s
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efficiency approaches the asymptotic bound for any estimator
using historical flood information [Cohn et al., 1997].

This paper fills a void in the work of Cohn et al. [1997] by
providing methods to assess the uncertainty in EMA flood-
quantile estimates. The paper also provides analytical formulas
for the asymptotic variance of EMA moments and quantile
estimators and shows how these can be used to compute ap-
proximate confidence intervals for EMA quantile estimates.
Monte Carlo experiments illustrate the performance of the
confidence intervals with data that an investigator might en-
counter in practice.

2. Statistical Model for Floods
As in Bulletin 17B [IACWD, 1982], we assume that

{Q1 z z z QN} are independent and identically distributed log-
Pearson type 3 (LP-3) variates. Thus Xi [ ln (Qi) has a
Pearson type 3 (P-3) distribution with probability density func-
tion [Lall and Beard, 1982]:

fu~ x! 5 5 S
x 2 t

b D a21

z exp S2
x 2 t

b D
ub uG~a!

for S x 2 t

b D $ 0,

0 otherwise,
(1)

where u [ {a, b, t}9 is a vector of parameters and G¼ is the
Gamma function [Abramowitz and Stegun, 1964].

The P-3 distribution can be characterized in terms of its first
three noncentral moments (Bobée [1975] discusses estimation
with the LP-3 moments), which are defined as

mX ; Fm91
m92
m93
G ; F Eu@X#

Eu@X2#
Eu@X3#

G . (2)

Here the accents (e.g., m91) by convention indicate that the
preceding scalar quantities are noncentral moments. However,
to avoid confusion the accents are omitted from vectors of
noncentral moments (e.g., mX) because, by convention, for
vectors an accent indicates transposition.

Eu[Xk] can be expressed as a binomial expansion:

Eu@Xp# 5 O
j50

p S p
j D b jtp2jS G~a 1 j!

G~a! D . (3)

The relationship between the parameter u and the noncentral
moments can be expressed in the following way:

u 5 u@m# 5 3
4~m92 2 m91

2!3

~m93 2 3m92m91 1 2m91
3!2

m93 2 3m92m91 1 2m91
3

2~m92 2 m91
2!

m93m91 2 2m92
2 1 m92m91

2

m93 2 3m92m91 1 2m91
3

4 (4)

mX 5 m@u#

5 F ab 1 t
a~1 1 a!b2 1 2abt 1 t2

a~1 1 a!~2 1 a!b3 1 3a~1 1 a!b2t 1 3abt2 1 t3G. (5)

3. Estimating Sample Moments and Quantiles
Noncentral sample moments for ordinary (uncensored) data

can be computed directly and simply:

m̂ 5 M̂ 5 ~1/N! O
i51

N

X i ; ~1/N! O
i51

N F Xi

Xi
2

Xi
3G . (6)

Here N denotes the sample size, bold letters indicate vectors or
matrices, and carets are used to identify estimators.

3.1. Censored Data

Historical and paleoflood information can often be charac-
terized statistically as “Type I censored data” [Leese, 1973;
Stedinger and Cohn, 1986]. The term censored refers to the
situation in which the values of some of the observations in a
sample are unknown [Schneider, 1986]. Censoring occurs for
various reasons.

3.1.1. Perception threshold: We have a record of the
value of X only when the magnitude of X exceeded some
perception threshold [Stedinger and Cohn, 1986; Potter, 1999].

3.1.2. Instrument range: For economic or technological
reasons we may choose to employ instruments (or experimen-
tal designs) that record only a limited range of a geophysical
phenomenon, and values outside the range will be reported as
“out-of-range” or “censored” data. For example, extreme
groundshaking can exceed the range of older seismometers
[Benz et al., 2000].

3.1.3. Deliberate: We may choose to censor data after the
fact. For example, deliberately censoring data below a thresh-
old can be a valid and effective way to make a model insensi-
tive to low outliers that might otherwise overly influence model
“fit” (see Potter [1999] for discussion).

Figure 1 depicts an annual peak flood series for the Amer-
ican River (California) from 1850 to 1997. The series is “sys-
tematic” for the NS 5 93 most recent years; we know the
value of each annual peak flood because there was a stream-
gage at the site. However, we also know something about each
of the NH 5 55 annual peak floods that occurred between
1850 and 1904. We know the magnitude of the “historic flood”
of 1862 because the flood was so big that people recorded its
magnitude at the time; we can also reconstruct its magnitude
from the geological evidence that it left behind. Likewise, we
know that the 54 other annual peak flows that occurred during
the “historical period” did not leave evidence behind. Their
magnitudes were below the perception threshold (here drawn

Figure 1. A flood record for American River at Fair Oaks
combining systematic data from 1905 to 1997 with historical
information from 1850 to 1904. Note that one “historic flood”
occurred in 1862; the other 54 annual peak flows between 1850
and 1904 were below 140,000 (cfs) and are thus treated as
censored data.
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at 140,000 cfs) because otherwise we would have records, as we
do for the 1862 event.

One consequence of censoring is that instead of working
with X directly, one is faced with a noninvertible function of
the data, c(X):

c~X! 5 H “less than a” X , a
X a # X # b

“greater than b” X . b
(7)

One knows which category X is in: less than the perception
threshold a; within the closed interval [a , b]; or greater than
b . Also, the magnitude of X is known if X is within [a , b].
However, only a bound on X can be identified if X , a or X .
b .

This kind of censoring results in three categories of data
(“less,” “between,” and “greater”), and the number of obser-
vations in each of these categories is a random variable, de-
noted NL, NB, and NG, respectively. Because each X must fall
into one of the three categories, the total sample size is con-
stant: N 5 NL 1 NB 1 NG.

Recording censored data requires some extra bookkeeping,
but there is a simple way to do this: Each observation, say x ,
can be recorded as a vector, (tL, tU), where tL is a lower
bound on the value of the observation and tU is a correspond-
ing upper bound. How (tL, tU) represents what we know about
x depends on the value of x:

Value of x Category (tL,tU)

x , a L (2`, a)
a # x # b B (x, x)
x . b G (b, `)

3.2. Estimating Moments From Censored Data

There is no simple method comparable to (6) for computing
the sample moments of {X1 z z z XN} from the observables
{c(X1) z z z c(XN)}. Statisticians often employ maximum
likelihood estimators (MLE) to utilize categorical data be-
cause of their many desirable properties [Kendall et al., 1979;
David, 1981; Stedinger and Cohn, 1986; Cohn, 1988; Cohn et al.,
1992]. Given regularity conditions, one can show that MLEs
are asymptotically efficient and unbiased [Kendall et al., 1979].
However, they are not easy to use or to explain, and MLEs are
particularly troublesome when applied to the P-3 distribution
because the P-3 does not satisfy the regularity requirements
(see Hirose [1995] for discussion).

There is also a nontechnical issue to consider. As a practical
matter, adoption of MLEs for flood-frequency analyses in the
United States would involve a substantial shift away from the
current method of moments approach in the Bulletin 17B guide-
lines for Federal agencies, likely affecting floodplain delineations
across the nation. From a regulatory perspective, such a change
would create many complications and be difficult to implement.
As a consequence, for the near future it seems likely that the
method-of-moments/LP-3 framework described in Bulletin 17B
will continue to be recommended for most flood-frequency stud-
ies in the United States. Under these circumstances, EMA has
great appeal [England, 1998; Potter, 1999].

3.3. EMA: What It Is And How It Works

EMA is an iterative procedure for locating a fixed point, M̂
[ [m̂1, m̂2, m̂3]9 , that solves the nonlinear equation:

M̂ 5 ~1/N! O
i51

N

x~c~Xi! , M̂!((@c~Xi!# , (8)

where

(@X# ; F (~X , a!
(~a # X # b!

(~X . b!
G (9)

(~condition! ; H 1 condition 5 true
0 otherwise (10)

x~c~X! , M! 5 F Eu@M#@X uX , a# Xi Eu@M#@X uX . b#
Eu@M#@X2uX , a# Xi

2 Eu@M#@X2uX . b#
Eu@M#@X3uX , a# Xi

3 Eu@M#@X3uX . b#
G
(11)

Eu@M#@XpuX , a# 5 Eu@Xpu 2 ` , X , a# (12)

Eu@M#@XpuX . b# 5 Eu@Xpub , X , `# (13)

Eu@Xpua # X # b# 5

E
a

b

xpfu~ x! dx

E
a

b

fu~ x! dx

(14)

Eu@Xpua # X # b#

5 5 Oj50

p S p
j D b jtp2j1 GS a 1 j ,

b 2 t

b
,

a 2 t

b D
GS a ,

b 2 t

b
,

a 2 t

b D 2 b , 0

O
j50

p S p
j D b jtp2j1 GS a 1 j ,

a 2 t

b
,

b 2 t

b D
GS a ,

a 2 t

b
,

b 2 t

b D 2 b . 0

(15)

G~a , a , b! 5 E
max 0,a

max 0,b

ta21 exp (2t) dt . (16)

Starting with an initial estimate M 5 M0 inserted into the
right-hand side of (8), a value M1 is obtained on the left. This
value is then inserted into the right-hand side, and in this way,
EMA iterates until a fixed point, M̂, is located. EMA has been
found to converge reliably [Cohn et al., 1997].

3.4. Asymptotic Variance of EMA
Moments Estimator

The formula for the asymptotic variance of the EMA mo-
ments estimator, denoted S̃, is derived in Appendix A (section
A1). It is obtained by linearizing the expectations in (8) and
solving for M in terms of the sample Xi values. The estimator
S̃ is then expressed as a function of the population parameters,
the record lengths, and the censoring thresholds.

Equation (56) for S̃ in section A1 can serve two purposes:
(1) As an approximation to the true variance-covariance matrix
of the non-central moments given the true parameters of the
distribution. This is denoted S̃; and (2) As an estimator of the
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variance-covariance matrix given estimated parameters. This is
denoted Ŝ.

3.5. Multiple Censoring Thresholds

Section 3.1 of this paper addresses the case where all obser-
vations, [X1 z z z XN]9 are subject to the same censoring thresh-
olds. Although one can imagine censored data as described in
section 3.1 (crest stage gages report exact stage information
only for floods that rise above the bottom of the gage and do
not exceed the top [Friday, 1965]) the typical situation is more
complicated. It includes multiple classes of censored data, pos-
sibly a systematic (uncensored) record combined with histori-
cal or paleoflood data covering a longer period. Censoring
thresholds might vary over time [e.g., Stedinger et al., 1988].

To accommodate multiple thresholds one replaces the ma-
trices B, C, D in section A1 by ¥ Bj, ¥ Cj, and ¥ Dj, where the
subscripts refer to classes of censored data. The total record
length N is simply the sum of the record lengths for each class.
The rest of the matrix algebra remains essentially unchanged.

3.6. EMA Quantile Estimator

The quantile function for the P-3 distribution is

Xp 5 Fu
21~ p! 5 H t 1 bG21~a , p! b . 0,

t 1 bG21~a , 1 2 p! b , 0,
t b 5 0.

(17)

F21 is the inverse of the P-3 cumulative distribution function,
p is the nonexceedance probability, and G21 is the inverse of
the incomplete regularized Gamma function [Abramowitz and
Stegun, 1964, pp. 255–266]. An estimator for P-3 quantiles is
given by substituting estimated moments into (4) to obtain
estimated parameters û 5 {t̂, â, b̂}9, which are then used to
obtain the quantile estimator:

X̂p ; Fû

21~ p! . (18)

4. Confidence Intervals
Accurate confidence intervals for P-3 quantiles (LP-3 confi-

dence intervals are obtained by exponentiating the endpoints
of the P-3 intervals) have been developed and extensively
tested for use with complete data [Chowdhury and Stedinger,
1991; Hu, 1987; Whitley and Hromadka, 1987, 1999; Ashkar and
Bobée, 1988; Ashkar and Ouranda, 1998]. These approaches
are based on normal distribution theory, and exploit the inde-
pendence of the normal distribution’s sample mean and vari-
ance. The confidence intervals for quantiles are then expressed
in terms of the noncentral T distribution. Some formulas
[Chowdhury and Stedinger, 1991] employ a correction to com-
pensate for differences between the normal and P-3 distribu-
tions. However, applying these results to censored data is prob-
lematic for two reasons. First, it is not obvious how to define
degrees of freedom when dealing with censored samples. Sec-
ond, the mean and variance estimators for censored data tend
to be highly correlated, which violates one of the fundamental
assumptions of normal-based confidence intervals.

4.1. Simple Confidence Intervals

One simple approach for constructing approximate confi-
dence intervals around an unknown parameter requires only
the estimated value and its standard deviation [Kite, 1988;
Stedinger et al., 1993]. The results for a 100« percent two-sided
CI for Xp are

CI < ~X̂p 1 z ~12«!/ 2ŝX̂ p, X̂p 1 z ~11«!/ 2ŝX̂ p! , (19)

where z(12«)/ 2 is the (1 2 «)/2 quantile of the standard normal
distribution, and the equation for estimating sX̂p

appears as
(67) in section A3.

The confidence intervals defined in (19) are simple, but they
are not entirely satisfactory because X̂p is generally highly
correlated with its estimated standard deviation, ŝX̂p

. Thus,
even though

Z ;
Xp 2 X̂p

s X̂ p

(20)

has close to a standard normal distribution [Cohn et al., 1997],
this is not the case for the random variable

Z2 ;
Xp 2 X̂p

ŝX̂ p

. (21)

The consequence of this problem is bias in the confidence
interval and failure to provide the nominal coverage, which will
be made clear by the Monte Carlo results presented in section
5.3.

4.2. Adjusted Confidence Intervals

The simple confidence intervals in section 4.1 can be mod-
ified to correct for the correlation between X̂p and ŝX̂p

. Con-
sider the statistic

T ;
~Xp 2 X̂p!

ŝ X̂ p 1 k~Xp 2 X̂p!
, (22)

where

k ;
Cov̂ @X̂p, ŝ X̂ p#

ŝX̂ p

2 (23)

is a function of the sample size and the censoring threshold
(and, to some extent, of a), and is selected so that the numer-
ator and denominator of (22) are asymptotically uncorrelated.
Estimators for Cov @X̂p, ŝX̂p

# and sX̂p

2 are available from (70) in
section A4.

The statistic T in (22) can be expressed as a ratio of two
random variables

T ;
Z
W , (24)

where

Z 5
~Xp 2 X̂p!

sX̂ p

(25)

W 5
ŝ X̂ p 1 k~Xp 2 X̂p!

s X̂ p

(26)

Z , the numerator of (24), is asymptotically standard normal.
The denominator W is by construction asymptotically uncor-
related with the numerator and has a mean of 1 and an as-
ymptotic variance of

Var @W# 5
sŝ

2
X̂ p

2 2E@k# Cov @X̂ p, ŝ X̂p
# 1 E@k2#sX̂ p

2

sX̂ p

2 , (27)
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Var @W# 5

sŝ
2

X̂ p

2
Cov2 @X̂p, ŝ

X̂ p#

sX̂ p

2

sX̂ p

2 . (28)

Equation (71) provides estimators for the terms appearing on
the right-hand side of (28).

The denominator W can be satisfactorily approximated by
the square root of a xn

2 random variable divided by its mean.
The distribution’s “degrees of freedom,” n, is defined so as to
preserve the second moment of W (the mean of W has already
been fixed at 1). This implies setting

n ;
E2@W#

2 Var @W#
, (29)

n 5
1

2 Var @W#
. (30)

(The mean and variance of a xn
2 variate, say X , are respectively

n and 2n; therefore, asymptotically, =(X/n) has mean 1 and
variance 1/(2n).) It is important to note that n is a function of
the quantile being estimated, as well as the sample size of the
data.

T , expressed as the ratio of a standard normal random
variable to the square root of an independent xn

2 random vari-
able divided by its degrees of freedom, is recognizable as a
Student Tn variate [Abramowitz and Stegun, 1964].

One can rearrange (22) so that Xp appears only on the
left-hand side:

Xp 5 X̂p 1
ŝ X̂ pT

1 2 kT . (31)

Substituting Tn ,(12«)/ 2 for T in (31) results in adjusted con-
fidence intervals of the form:

S X̂p 1
ŝ X̂ pTn,~12«!/ 2

1 2 kTn,~12«!/ 2
, X̂p 1

ŝ X̂ pTn,~11«!/ 2

1 2 kTn,~11«!/ 2
D . (32)

One caution should be noted: The denominator in the last part
of (31), (1 2 kT), can be negative for sufficiently large (small,
for kT , 0) T , which leads to nonsensical confidence inter-
vals. This can occur in small samples (NS 5 25) when esti-
mating confidence intervals whose nominal coverage is close to
100% and indicates the limited validity of the approximations
employed above. Nonsensical confidence intervals were
avoided in the Monte Carlo simulations by constraining the
value of k so that kT was never smaller than 0.5.

4.3. Some Observations Related to the
Simple and Adjusted Confidence Intervals

Two types of confidence intervals have been defined, and it
is worthwhile to compare some of their properties. Specifically,
(1) the simple and the adjusted confidence intervals will always
overlap; in particular, they both contain the point estimate for
X̂p; and (2) the adjusted intervals around X̂p will tend to be
wider than the corresponding simple intervals, at least for the
Pearson type 3 distribution (results for Q̂p will depend on the
parameters). This occurs for two reasons: first, because the T
distribution has longer tails than does the normal; and second,
even if we approximate T by the normal variate z , the width for
the simple intervals is of the form

W 5 ~X̂p 1 z ~11«!/ 2ŝ X̂ p! 2 ~X̂p 1 z ~12«!/ 2ŝ X̂ p! (33)

W 5 2z ~11«!/ 2ŝ X̂ p, (34)

whereas the adjusted interval width is of the same form as
width 5 high 2 low and

W 5 S X̂p 1
ŝ X̂ pT ~11«!/ 2

1 2 kT ~11«!/ 2
D 2 S X̂p 1

ŝ X̂ pT ~12«!/ 2

1 2 kT ~12«!/ 2
D (35)

W < 2z ~11«!/ 2ŝ X̂ p/@1 2 ~kz ~11«!/ 2!
2# (36)

Thus the ratio of the adjusted interval width to the simple
interval width in large samples is 1/[1 2 (kz(11«)/ 2)2]. (3)
Although the simple intervals are narrower than the adjusted
intervals, they are generally not subsets of the adjusted inter-
vals.

5. Monte Carlo Experiments
Monte Carlo experiments were used to address three ques-

tions:
1. How well do the asymptotic moment variances (equa-

tion (55), Appendix A.1) approximate the true variance of M̂?
2. How well does the linearized quantile variance estima-

tor, ŝX̂p

2 (equation (66), Appendix A3), describe the true quan-
tile variance sX̂p

2 ?
3. How often do confidence intervals constructed using the

methods described in sections 4.1 (equation (19)) using simple
confidence intervals, and in 4.2 (equation (32)) using the ad-
justed confidence intervals, contain the true quantiles?

A number of simulations were run to determine the estima-
tors’ performance under a range of circumstances that might
be encountered in practice. This included examining the effect
of varying the following sampling population parameters.

1. Flood data from the United States seldom exhibits log-
skewness outside the range 20.5 to 10.5. Log skews of 20.5,
20.1, 10.1, and 10.5 were used in the experiments. Varying
skewness addresses all issues related to the LP-3 parameters
because EMA is invariant with respect to location and scale.

2. In all cases it was assumed that the first “class” of flood
data consisted of (uncensored) systematic gage data (i.e., a1 5
2` and b1 5 `). Values of NS of 25 and 100 years were used,
which reflect systematic records that might be encountered in
practice.

3. In addition to the gage data, a “class” of (historical)
flood information was also used. This represents a period of
NH years prior to the systematic record during which large
floods—those that exceeded the observation threshold—were
recorded. Values of NH of 0 (no historical information), 50
and 150 years were used. The estimators’ performance with
longer historical periods, which often arise with paleoflood
data [Jarrett and Malde, 1987], can be inferred reasonably well
from the results with NH 5 150.

4. The censoring threshold a2, the level above which the
exact magnitude of floods in the historical period would be
recorded, was set at the 90th percentile of the sampling pop-
ulation, X0.90.

Each Monte Carlo simulation consisted of 10,000 replicate
samples.

5.1. Results for Moments Estimator Variance

Table 1 shows how well asymptotic variances for M (equa-
tion (55), Appendix A1) describe the true moment variance. In
the absence of censoring, the asymptotic variances are exact
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for all sample sizes, so one need consider only cases which
include historical information. Even in the small-sample case
of NS 5 25 and NH 5 50, the ratio of the true variances
(those observed in Monte Carlo simulation) to the asymptotic

variances is close to 1. The most extreme (statistically signifi-
cant) deviation is around 9%. For the larger sample sizes, only
2 of the 72 variance term differences was statistically significant
at the 5% level.

Table 2. Percentage Bias in EMA Quantile Estimator X̂p and in Estimator for Quantile Standard Deviations ŝX̂p

2

NS NH Skew

Quantile Estimated

0.90 0.99 0.999

Bias SD Bias SD Bias SD

25 0 20.5 1.3* 0 20.2 17* 20.2 26*
20.1 0.3* 2* 0.3* 8* 0.0 12*

0.1 20.2* 1 20.5* 8* 0.0 12*
0.5 21.1* 2* 23.0* 13* 0.2 18*

50 20.5 0.9* 23* 20.2* 13* 20.1 23*
20.1 0.1* 22* 0.1* 4* 0.0 8*

0.1 20.1* 21 20.2* 4* 0.0 7*
0.5 20.4* 21 21.3* 6* 0.1 10*

150 20.5 0.5* 23* 20.2* 10* 20.1 19*
20.1 0.1* 22* 0.1* 3* 0.0 6*

0.1 20.1* 0 20.1* 3* 0.0 4*
0.5 20.2* 21 20.7* 5* 0.1 7*

100 0 20.5 0.4* 22* 20.1 5* 20.1 8*
20.1 0.1* 21 0.1* 2* 0.0 3*

0.1 20.1* 1 20.2* 2* 0.0 3*
0.5 20.3* 1 20.8* 4* 0.1 5*

50 20.5 0.3* 21 20.1 5* 20.1 8*
20.1 0.1* 21 0.1* 1 0.0 2

0.1 20.1* 0 20.1* 1 0.0 2*
0.5 20.2* 0 20.6* 3* 0.1 4*

150 20.5 0.2* 22* 20.1* 4* 20.1 8*
20.1 0.0* 21 0.0* 2* 0.0 4*

0.1 20.1* 0 20.1* 1 0.0 2*
0.5 20.1* 21 20.4* 2* 0.1 3*

Historical data are censored at the 90% level. Asterisks indicate statistical significance at 5% level.

Table 1. Percentage Differences Between Monte Carlo and Asymptotic Variances and Covariances for First Three
Noncentral Moments Given NS-Year Systematic Record Combined With NH Years of Historical Information
Censored at the 90th Percentile

NS NH Skew

Variance-Covariance Elements

[m1] [m1, m2] [m1, m3] [m2] [m2, m3] [m3]

25 0 20.5 21 2 21 21 21 21
20.1 21 7 22 22 4 23

0.1 21 7 22 22 4 23
0.5 21 2 21 21 21 21

50 20.5 2 22 2 25* 21 9*
20.1 1 26* 0 23 22 3

0.1 0 23 1 22 24 0
0.5 22 224 4 1 10 24*

150 20.5 1 26* 21 28* 0 12*
20.1 21 29* 25* 27* 27* 0

0.1 2 0 2 22 4 7*
0.5 1 2 2 22 213* 24*

100 0 20.5 0 24 21 2 22 22
20.1 0 222 0 0 28 21

0.1 0 222 0 0 28 21
0.5 0 24 21 2 22 22

50 20.5 0 1 1 0 1 2
20.1 1 210 0 23 26 1

0.1 2 4 2 21 18 2
0.5 21 1 0 0 0 21

150 20.5 1 23 0 23 22 2
20.1 0 25 0 21 23 21

0.1 0 3 0 1 5 1
0.5 3* 2174 4* 1 3 0

Presented, as a function of NS, NH and population skewness. Asterisks indicate statistical significance at the 5 percent level.
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Table 3. Observed Coverages for Simple and Adjusted Confidence Intervals for X0.99 as a Function of Systematic Record
Length (NS), Historical Record Length (NH), and Population Skewness

NS NH Sk

90% Confidence Intervals

Simple CI Adjusted CI

^X& X^ & ^ &X ^X& X^ & ^ &X

25 0 20.5 96.8* 0.1* 3.1* 91.9* 3.1* 4.9
20.1 90.6* 0.1* 9.3* 89.5 3.5* 7.0*

0.1 87.4* 0.1* 12.6* 89.2* 3.9* 6.9*
0.5 83.5* 0.0* 16.5* 90.1 4.1* 5.8*

50 20.5 95.7* 0.6* 3.7* 92.0* 3.3* 4.7
20.1 90.9* 0.5* 8.6* 90.3 3.8* 5.9*

0.1 88.4* 0.4* 11.3* 90.3 3.9* 5.8*
0.5 86.3* 0.1* 13.6* 91.2* 4.3* 4.6*

150 20.5 95.4* 1.4* 3.3* 91.7* 3.8* 4.6*
20.1 90.6 1.2* 8.2* 90.6 4.4* 5.0

0.1 89.1* 0.6* 10.3* 90.9* 3.9* 5.3
0.5 88.0* 0.6* 11.4* 91.2* 4.3* 4.5*

100 0 20.5 94.3* 1.7* 4.1* 89.9 4.3* 5.9*
20.1 90.3 1.3* 8.4* 89.7 4.3* 6.0*

0.1 89.0* 0.9* 10.2* 89.8 4.3* 5.9*
0.5 88.5* 0.5* 11.0* 90.8* 4.3* 4.9

50 20.5 93.8* 2.0* 4.2* 90.6 4.0* 5.4
20.1 90.2 1.5* 8.2* 89.9 4.5* 5.6*

0.1 89.1* 1.3* 9.6* 90.1 4.1* 5.8*
0.5 89.1* 0.8* 10.1* 90.5 4.6 4.9

150 20.5 93.5* 2.2* 4.3* 90.5 4.3* 5.3
20.1 90.8* 2.0* 7.2* 90.4 4.7 4.9

0.1 89.4 1.5* 9.2* 90.5 3.9* 5.5*
0.5 89.2* 1.1* 9.7* 90.6 4.6 4.8

Results correspond to a nominal confidence levels of (90%). Three columns correspond to each CI method, (^X&, X ^ &, ^ &X), indicating
the percentage of cases in which the estimated confidence interval contained X0.99, the estimated CI was greater than X0.99, and the estimated
CI was less than X0.99, respectively. Asterisks indicate statistically significant deviations from expected coverages based on a balanced two-sided
test at 5% level.

Table 4. Observed Coverages for Simple and Adjusted Confidence Intervals for X0.99 as a Function of Systematic Record
Length (NS), Historical Record Length (NH), and Population Skewness

NS NH Sk

99% Confidence Intervals

Simple CI Adjusted CI

^X& X^ & ^ &X ^X& X^ & ^ &X

25 0 20.5 99.7* 0.0* 0.4* 98.1* 0.3* 1.6*
20.1 97.8* 0.0* 2.3* 96.8* 0.4 2.8*

0.1 96.1* 0.0* 3.9* 96.7* 0.6 2.6*
0.5 93.2* 0.0* 6.8* 97.4* 1.0* 1.7*

50 20.5 99.4* 0.0* 0.6 98.8 0.2* 1.0*
20.1 97.7* 0.0* 2.4* 97.8* 0.5 1.7*

0.1 96.8* 0.0* 3.3* 98.2* 0.6 1.1*
0.5 95.2* 0.0* 4.9* 98.5* 0.8* 0.6

150 20.5 99.7* 0.0* 0.3* 98.5* 0.3* 1.2*
20.1 98.3* 0.0* 1.8* 98.5* 0.5 1.0*

0.1 97.3* 0.0* 2.7* 98.8 0.4 0.8*
0.5 96.3* 0.0* 3.7* 98.9 0.7* 0.4

100 0 20.5 99.7* 0.0* 0.3* 97.9* 0.4* 1.8*
20.1 98.2* 0.0* 1.8* 98.3* 0.5 1.1*

0.1 97.4* 0.0* 2.6* 98.5* 0.6 0.9*
0.5 96.6* 0.0* 3.4* 98.8 0.8* 0.4

50 20.5 99.5* 0.0* 0.4 98.1* 0.4 1.5*
20.1 98.2* 0.0* 1.7* 98.5* 0.6 1.0*

0.1 97.6* 0.0* 2.4* 98.6* 0.6 0.7*
0.5 96.9* 0.0* 3.1* 98.7* 0.9* 0.4

150 20.5 99.6* 0.1* 0.4* 98.2* 0.4 1.4*
20.1 98.5* 0.0* 1.5* 98.6* 0.6 0.8*

0.1 97.7* 0.0* 2.3* 98.7* 0.5 0.7*
0.5 97.4* 0.0* 2.6* 98.9 0.7* 0.4

Results correspond to a nominal confidence levels of (99%). Three columns correspond to each CI method, (^X&, X ^ &, ^ &X), indicating
the percentage of cases in which the estimated confidence interval contained X0.99, the estimated CI was greater than X0.99, and the estimated
CI was less than X0.99, respectively. Asterisks indicate statistically significant deviations from expected coverages based on a balanced two-sided
test at 5% level.
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5.2. Results for the Quantile Estimator
One criterion for judging the performance of an estimator is

bias, which is the tendency of an estimator to over- or underes-
timate the parameter of interest. The “bias” columns in Table 2
show the bias of X̂0.99 (assuming t 5 0). The bias did not exceed
1.3% for the cases tested and declined rapidly with larger sample
sizes, confirming the finding of Cohn et al. [1997] that the EMA
estimator is not substantially biased.

The “SD” columns in Table 2 show how well the quantile
standard deviation estimator given in (65), ŝX̂p

, describes the
true quantile standard deviation, sX̂p

. Even for the small-
sample case, the asymptotic estimates are always within 17%
for sX̂0.99

. The estimated standard deviations are always
within 5% for the large sample cases. This suggests that the
linear approximation used to derive the variances is reason-
ably good.

5.3. Results for Confidence Intervals

Tables 3, 4, and 5 show how often the simple and adjusted
confidence intervals actually contain the true quantiles and the
percentage of “failures” that occurred in the right and left tails.
Figures 2 and 3 present the same results for the cases corre-
sponding to NS 5 25 and NH 5 50.

The coverages for the simple confidence intervals are
roughly correct, though far from exact with small samples. For
a nominal 90% confidence interval, the overall coverage
ranged from 83.5 to 96.8%. As can be seen in Figure 2, nearly
all of the failures occurred when the confidence interval was
below the true quantile. This is because X̂p is positively corre-
lated with ŝX̂p

. When the confidence interval (whose center is

X̂p) is low, the confidence interval (whose width is propor-
tional to ŝX̂p

) is likely to be too narrow; when it is too high it
is likely to be too wide.

Table 5. Observed Coverages for Simple and Adjusted Confidence Intervals for X0.99 as a Function of Systematic Record
Length (NS), Historical Record Length (NH), and Population Skewness

NS NH Sk

99.9% Confidence Intervals

Simple CI Adjusted CI

^X& X^ & ^ &X ^X& X^ & ^ &X

25 0 20.5 100.0* 0.0* 0.1 99.1* 0.0 0.9*
20.1 99.3* 0.0* 0.7* 98.3* 0.1 1.7*

0.1 98.6* 0.0* 1.4* 98.3* 0.2* 1.5*
0.5 96.8* 0.0* 3.2* 98.8* 0.3* 0.9*

50 20.5 99.9 0.0* 0.1 99.7* 0.0 0.2*
20.1 99.2* 0.0* 0.8* 99.4* 0.1 0.6*

0.1 99.0* 0.0* 1.0* 99.4* 0.1* 0.5*
0.5 97.9* 0.0* 2.1* 99.6* 0.2* 0.2*

150 20.5 100.0* 0.0* 0.0 99.6* 0.0* 0.4*
20.1 99.5* 0.0* 0.5* 99.6* 0.1 0.4*

0.1 99.1* 0.0* 0.9* 99.6* 0.1 0.3*
0.5 98.7* 0.0* 1.3* 99.7* 0.2* 0.1

100 0 20.5 100.0* 0.0* 0.0* 99.3* 0.0 0.7*
20.1 99.6* 0.0* 0.4* 99.4* 0.1 0.5*

0.1 99.2* 0.0* 0.8* 99.6* 0.1 0.3*
0.5 98.7* 0.0* 1.3* 99.8* 0.2* 0.1

50 20.5 100.0* 0.0* 0.0 99.4* 0.0* 0.6*
20.1 99.6* 0.0* 0.4* 99.6* 0.1 0.3*

0.1 99.3* 0.0* 0.7* 99.7* 0.2* 0.1*
0.5 99.0* 0.0* 1.0* 99.8 0.1* 0.0

150 20.5 100.0* 0.0* 0.1 99.5* 0.1 0.4*
20.1 99.7* 0.0* 0.3* 99.7* 0.1 0.2*

0.1 99.2* 0.0* 0.8* 99.7* 0.1 0.2*
0.5 99.1* 0.0* 0.9* 99.7* 0.2* 0.1

Results correspond to a nominal confidence levels of (99.9%). Three columns correspond to each CI method, (^X&, X ^ &, ^ &X), indicating
the percentage of cases in which the estimated confidence interval contained X0.99, the estimated CI was greater than X0.99, and the estimated
CI was less than X0.99, respectively. Asterisks indicate statistically significant deviations from expected coverages based on a balanced two-sided
test at 5% level.

Figure 2. The frequency with which the simple 90% confi-
dence intervals fail to cover the true quantile (in this case the
99th percentile of the frequency distribution), as a function of
population skewness. The two sections of each bar indicate the
frequency with which a failure occurred because the confi-
dence interval was above or below the true quantile. Results
are based on Monte Carlo simulation with a systematic record
length of NS 5 25, a historical period of length NH 5 50, and
a censoring threshold at the 90th percentile.
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The results for the adjusted confidence intervals are consid-
erably better. The nominal 90% confidence intervals provided
coverages between 89.2 and 92.0% in all cases. Not only were
overall coverages close to nominal values, but, as can be seen
in Figure 3, the failures occur with nearly equal frequency in
the left and right tail. For the 99.9% confidence intervals the
adjusted confidence intervals were found to be consistently too
narrow, although they still performed substantially better than
the simple confidence intervals.

5.4. Discussion of Results

The results in section 5.3 suggest that confidence intervals
constructed according to the adjusted confidence interval
procedure, though not exact, achieved nearly the specified
coverages. Cohn et al. [1997] had previously noted that even
with modest-sized samples, the EMA quantile estimator was
nearly normally distributed, nearly unbiased, and its vari-
ance was close to the Frechet-Cramér-Rao information
bounds [Rohatgi, 1976; Kendall et al., 1979, chapter 17.15, p.
9]. Thus it is not surprising that asymptotic theory accurately
predicts the behavior of EMA quantile estimators.

6. Concerns About Historical and Paleoflood
Information

This paper provides a method for computing the uncertainty
in EMA flood quantile estimates. This should facilitate in-
creased use of historical and paleoflood information in flood
studies. One must be careful, however, because the value of
historical information depends on several hard to test as-
sumptions: (1) That sampling characteristics and accuracy of
historical data are understood; (2) that the data are repre-
sentative of the target population; (3) that historical and
paleoflood information is correctly interpreted; (4) that an
adequate statistical flood model is employed; (5) that ap-

propriate statistical estimation methods are used; (6) that
one can specify the values for a and b; (7) and that one can
confidently assign every historical or paleo flood to the cor-
rect category (W. Kirby, oral communication, U.S. Geolog-
ical Survey, 2000).

Similar assumptions are needed, and must be justified, when
using systematic data alone, but we have more experience
working with such data and have acquired confidence in our
methods. As researchers gain experience with historical data
sources and develop better methods for interpreting the data
and as practitioners make increased use of this information in
their flood frequency studies, it seems likely that many of the
concerns about historical information will be resolved.

In its recent study of California’s American River [Potter, 1999]
a National Research Council Committee felt justified in recom-
mending use of the 57 years of at-site historical information to
augment the 92-year systematic record. The Committee chose not
to employ a paleoflood record, extending back 3000 to 5000 years,
because of concerns about some of the assumptions listed above.

Nonetheless, there remains need for additional research on
historical flood information and its interpretation. There are
also issues related to EMA that need further research, includ-
ing (1) how best to incorporate regional information; (2) how
to incorporate measurement error; and (3) how, exactly, to
implement each of the components of Bulletin 17B in the
context of EMA.

7. Conclusions
This paper shows how first-order methods can be used to

derive approximations for the variance of EMA moments and
flood quantile estimators. Approximate confidence intervals
are developed using normal theory with and without an adjust-
ment to correct for the correlation between the quantile esti-
mate and its estimated standard deviation. Monte Carlo ex-
periments show that the adjusted confidence intervals for flood
quantiles, while not exact, provide reasonably accurate descrip-
tions of the uncertainty in flood quantile estimates.

Appendix A
A1. Derivation of EMA Moments Variance

This section outlines a derivation of the asymptotic variance,
S̃, of the EMA moments estimator M̂. The derivation involves
power-series expansions of the nonlinear terms in (8) and then
discarding low-order terms.

Equation (8) defines the EMA estimate M̂ as the value of M
that satisfies the matrix equation:

M 5 ~1/N! O
i51

N

x~c~Xi! , M!((@c~Xi!# . (37)

One can use (37) to derive a first-order approximation to S̃
without explicitly solving the equation. Subtracting mM 5
E[M] from both sides of (8) and multiplying by N yields

N~M 2 mM! 5 O
i51

N

x~c~Xi! , M!((@c~Xi!# 2 NmM. (38)

Define

NL ; O
i51

N

(~Xi , a! (39)

Figure 3. The frequency with which the adjusted 90% con-
fidence intervals fail to cover the true quantile (in this case the
99th percentile of the frequency distribution), as a function of
population skewness. The two sections of each bar indicate the
frequency with which a failure occurred because the confi-
dence interval was above or below the true quantile. Results
are based on Monte Carlo simulation with a systematic record
length of NS 5 25, a historical period of length NH 5 50, and
a censoring threshold at the 90th percentile.
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NG ; O
i51

N

(~Xi . b! . (40)

Thus

O
i51

N

x~c~Xi! , M!((@c~Xi!# 5 NLEu@M#@X uX , a#

1 NGEu@M#@X uX . b# 1 O
i51

NB

X i, (41)

where the final summation is taken over X«[a , b]. The ex-
pected values, Eu[M][XuX , a], can be expanded in a series in
(M 2 mM):

Eu@M#@X uX , a# < mXL 1 JL~M 2 mM! , (42)

where

mXL 5 Eu@mM#@X uX , a# (43)

JL

5 3
­Eu@M#@XuX , a#

­m1

­Eu@M#@XuX , a#

­m2

­Eu@M#@XuX , a#

­m3

­Eu@M#@X2uX , a#

­m1

­Eu@M#@X2uX , a#

­m2

­Eu@M#@X2uX , a#

­m3

­Eu@M#@X3uX , a#

­m1

­Eu@M#@X3uX , a#

­m2

­Eu@M#@X3uX , a#

­m3

4.

(44)

Analogously, Eu[M][XuX . b] can be expanded around mXG

with Jacobian JG. Equation (41) can then be linearized in
terms of (M 2 mM) to give

O
i51

N

x~c~Xi! , M!((@c~Xi!# < NLmXL 1 NGmXG

1 ~NLJL 1 NGJG!~M 2 mM! 1 O
i51

NB

X i. (45)

Equation (45) can be further expanded about the mean of NL

and NG and low-order terms discarded

O
i51

N

x~c~Xi! , M!((@c~Xi!# < NLmXL 1 NGmXG

1 ~mNLJL 1 mNG JG!~M 2 mM! 1 @~NL 2 mNL!JL

1 ~NG 2 mNG!JG]~M 2 mM! 1 O
i51

NB

X i < NLmXL 1 NGmXG

1 ~mNLJL 1 mNG JG!~M 2 mM! 1 O
i51

NB

X i, (46)

where mNL
[ E[NL] and mNG

[ E[NG] (and analogously
mNB

[ E[NB]). Substituting (46) into (38) results in a linear
equation in (M 2 mM):

N~M 2 mM! 5 NLmXL 1 NGmXG 1 ~mNLJL 1 mNG JG!

z ~M 2 mM! 1 O
i51

NB

X i 2 NmM, (47)

which can be rearranged to yield

NS I 2
mNLJL 1 mNG JG

N D ~M 2 mM!

5 NLmXL 1 NGmXG 1 O
i51

NB

X i 2 NmM. (48)

Equation (48) can be solved for (M 2 mM):

~M 2 mM! 5 ~1/N!S I 2
mNLJL 1 mNG JG

N D 21

z SNLmXL 1 NGmXG 1 O
i51

NB

X i 2 NmMD
< S I 2

mNLJL 1 mNG JG

N D 21

z FmXN 1 O
i51

mNB

~Xi 2 mXB! 2 NmMG, (49)

where

mX ; @mXL mXB mXG# (50)

mX ; FEu@XuX , a# Eu@Xua # X # b# Eu@XuX . b#
Eu@X2uX , a# Eu@X2ua # X # b# Eu@X2uX . b#
Eu@X3uX , a# Eu@X3ua # X # b# Eu@X3uX . b#

G (51)

N ; F NL

NB

NG

G . (52)

Substituting

B 5 mXN

C 5 O
i51

mNB

~X i 2 mXB!

(53)

D 5
mNLJL 1 mNG JG

N

A 5 ~I 2 D!21

into (49) and adding NmM to both sides yields

NM 5 A~B 1 C! 1 const. (54)

Dividing both sides of (54) by N , discarding the constant, and
taking variances of both sides yields the variance of M:

S̃ 5
1

N2 A~Var @B# 1 Var @C#!A* . (55)

Note that all of the elements in A converge rapidly to con-
stants, and B is uncorrelated with C because the value of each
Xi in the interval [a , b] is independent of the number of Xi in
the interval.

The variance of B is given by

Var @B# 5 mX Var @N#m*X. (56)
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N has a multinomial distribution [DeGroot, 1975, p. 247] with
variance

Var @N# 5 NF pL~1 2 pL! 2pL pB 2pL pG

2pL pB pB~1 2 pB! 2pB pG

2pL pG 2pB pG pG~1 2 pG!
G ,

(57)
where

F pL

pB

pG

G 5 F P@X , a#
P@a # X # b#

P@X . b#
G . (58)

The large-sample variance of C is the expected value of the
number of terms multiplied by the variance of each term:

Var [C] 5 mNBFV1,1 V1,2 V1,3

V2,1 V2,2 V2,3

V3,1 V3,2 V3,3
G , (59)

where

Vi, j ; Eu@Xi1jua # X # b#

2 Eu@Xiua # X # b#Eu@Xjua # X # b# (60)

and the expected values, Eu[Xpua # X # b] are available in (15).

A2. A Special Case: Variance of
Uncensored Moments Estimates

In the absence of censoring, the exact variance of M̂ can be
computed directly from (55) in Appendix A1. N is the system-
atic record length. Substituting a 5 2` and b 5 ` , we find
that J 5 [0], Var [N] 5 [0], and only the middle column of
mX—[E[X], E[X2], E[X3]]9—needs to be considered. Thus
A 5 I, B 5 0, and (55) reduces to

S̃ 5 ~1/N!FV1,1 V1,2 V1,3

V2,1 V2,2 V2,3

V3,1 V3,2 V3,3
G , (61)

where

Vi, j ; Eu@Xi1j# 2 Eu@Xi#Eu@Xj# . (62)

Equation (3) defines the expectations, Eu[Xk].

A3. Derivation of EMA Quantile Variance

The asymptotic variance of X̂p can be obtained from a first-
order expansion of X̂p as a function of M:

X̂p < Xp 1 JX̂p~M 2 mM! , (63)

where

JX̂ p 5 F ­X̂p

­m̂1

­X̂p

­m̂2

­X̂p

­m̂3
G . (64)

The Jacobian can be evaluated by first computing derivatives
with respect to {a, b, t} and then applying the chain rule.

The variance of X̂p can be approximated:

s̃X̂p

2 < JX̂p z S̃ z J *̂Xp, (65)

where the linearized standard deviation s̃ X̂p
is defined as

(s̃X̂p

2 )1/ 2.
One can also define an estimator ŝX̂p

for the standard de-
viation of X̂p, by employing (65) with estimated parameters.
The function ŝX̂p

is a random function of M̂. Employing the
same approach as before, one can linearize ŝX̂p

into

ŝX̂p < sX̂p 1 JŝX̂p
~M 2 mM! , (66)

where

Jŝ X̂p
5 F ­ŝX̂p

­m̂1

­ŝX̂p

­m̂2

­ŝX̂p

­m̂3
G . (67)

Some of the equations (here and elsewhere in the paper)
involve fairly hard to evaluate derivatives. Although algebraic
results were used for most parts of this paper, the Jacobian in
(67) was evaluated by using numerical differentiation (specif-
ically the “DIFF” subroutine, written by David Kahaner and
available on the Web at http://gams.nist.gov/).

A4. Variance-Covariance of X̂p and ŝX̂p

Equations (64) and (67) can be used to approximate the
variance-covariance matrix of X̂p and ŝX̂p

:

Var F X̂p

ŝ X̂p
G ; F ŝX̂

2
p Cov @X̂ p, ŝ X̂ p#

Cov @X̂ p, ŝ X̂ p# ŝ X̂p

2 G , (68)

Var F X̂ p

ŝ X̂p
G < F JX̂p

J ŝ X̂ p

G S̃@J 9̂
X p J9ŝX̂ p

#, (69)

Var F X̂p

ŝ X̂ p
G ; F s̃ X̂p Coṽ @X̂ p, ŝ X̂p#

Coṽ @X̂p, ŝ X̂p# ŝ X̂p

2 G . (70)

If one substitutes Ŝ for S̃, one obtains an estimator for the
variance-covariance matrix of X̂p and ŝX̂p

.

A5. Avoiding Multicollinearity of the Moments

Noncentral moments prove to be convenient with respect to
algebra, but they create potential numerical problems with
respect to computation. The moments are highly collinear,
which makes the methods highly sensitive to errors; the finite
precision of most programming languages may not be ade-
quate for computing acceptable results.

A general solution to multicollinearity problems is to or-
thogonalize the variables with orthogonal polynomials [Press et
al., 1986]. A simple and often effective alternative is to “cen-
ter” the variable by fixing the population parameter t at t 5
2ab. This sufficiently reduces the multicollinearity of the non-
central moments to eliminate the numerical problems. Note
that it makes no difference what value of t is used because the
variance of EMA moments and quantile estimators is invariant
to t.
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